Group action invariants
| Degree $n$ : | $27$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $C_9\times S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,20,2,12,21,3,10,19)(4,9,23,25,13,17,6,8,22,27,15,16,5,7,24,26,14,18), (1,26,6)(2,27,4)(3,25,5)(7,13,10)(8,14,11)(9,15,12)(16,23,21)(17,24,19)(18,22,20) | |
| $|\Aut(F/K)|$: | $9$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 9: $C_9$ 18: $S_3\times C_3$, $C_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 9: $C_9$, $S_3\times C_3$
Low degree siblings
18T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4,27)( 5,25)( 6,26)( 7,13)( 8,14)( 9,15)(16,23)(17,24)(18,22)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)$ |
| $ 6, 6, 6, 3, 3, 3 $ | $3$ | $6$ | $( 1, 2, 3)( 4,25, 6,27, 5,26)( 7,14, 9,13, 8,15)(10,11,12)(16,24,18,23,17,22) (19,20,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20) (22,24,23)(25,27,26)$ |
| $ 6, 6, 6, 3, 3, 3 $ | $3$ | $6$ | $( 1, 3, 2)( 4,26, 5,27, 6,25)( 7,15, 8,13, 9,14)(10,12,11)(16,22,17,23,18,24) (19,21,20)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,25)( 2, 5,26)( 3, 6,27)( 7,11,15)( 8,12,13)( 9,10,14)(16,19,22) (17,20,23)(18,21,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,12,14)( 8,10,15)( 9,11,13)(16,20,24) (17,21,22)(18,19,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,26)( 2, 4,27)( 3, 5,25)( 7,10,13)( 8,11,14)( 9,12,15)(16,21,23) (17,19,24)(18,20,22)$ |
| $ 9, 9, 9 $ | $2$ | $9$ | $( 1, 7,23, 2, 8,24, 3, 9,22)( 4,11,17, 5,12,18, 6,10,16)(13,21,27,14,19,25,15, 20,26)$ |
| $ 18, 9 $ | $3$ | $18$ | $( 1, 7,21,27,11,17, 3, 9,20,26,10,16, 2, 8,19,25,12,18)( 4,14,24, 5,15,22, 6, 13,23)$ |
| $ 9, 9, 9 $ | $2$ | $9$ | $( 1, 8,22, 2, 9,23, 3, 7,24)( 4,12,16, 5,10,17, 6,11,18)(13,19,26,14,20,27,15, 21,25)$ |
| $ 18, 9 $ | $3$ | $18$ | $( 1, 8,20,27,12,16, 3, 7,19,26,11,18, 2, 9,21,25,10,17)( 4,15,23, 5,13,24, 6, 14,22)$ |
| $ 9, 9, 9 $ | $2$ | $9$ | $( 1, 9,24, 2, 7,22, 3, 8,23)( 4,10,18, 5,11,16, 6,12,17)(13,20,25,14,21,26,15, 19,27)$ |
| $ 18, 9 $ | $3$ | $18$ | $( 1, 9,19,27,10,18, 3, 8,21,26,12,17, 2, 7,20,25,11,16)( 4,13,22, 5,14,23, 6, 15,24)$ |
| $ 9, 9, 9 $ | $1$ | $9$ | $( 1,10,21, 2,11,19, 3,12,20)( 4,14,24, 5,15,22, 6,13,23)( 7,16,27, 8,17,25, 9, 18,26)$ |
| $ 9, 9, 9 $ | $1$ | $9$ | $( 1,11,20, 2,12,21, 3,10,19)( 4,15,23, 5,13,24, 6,14,22)( 7,17,26, 8,18,27, 9, 16,25)$ |
| $ 9, 9, 9 $ | $1$ | $9$ | $( 1,12,19, 2,10,20, 3,11,21)( 4,13,22, 5,14,23, 6,15,24)( 7,18,25, 8,16,26, 9, 17,27)$ |
| $ 9, 9, 9 $ | $2$ | $9$ | $( 1,16,14, 3,18,13, 2,17,15)( 4,19, 9, 6,21, 8, 5,20, 7)(10,27,24,12,26,23,11, 25,22)$ |
| $ 18, 9 $ | $3$ | $18$ | $( 1,16,11,25,20, 7, 2,17,12,26,21, 8, 3,18,10,27,19, 9)( 4,24,15, 6,23,14, 5, 22,13)$ |
| $ 9, 9, 9 $ | $2$ | $9$ | $( 1,17,13, 3,16,15, 2,18,14)( 4,20, 8, 6,19, 7, 5,21, 9)(10,25,23,12,27,22,11, 26,24)$ |
| $ 18, 9 $ | $3$ | $18$ | $( 1,17,10,25,21, 9, 2,18,11,26,19, 7, 3,16,12,27,20, 8)( 4,22,14, 6,24,13, 5, 23,15)$ |
| $ 9, 9, 9 $ | $2$ | $9$ | $( 1,18,15, 3,17,14, 2,16,13)( 4,21, 7, 6,20, 9, 5,19, 8)(10,26,22,12,25,24,11, 27,23)$ |
| $ 18, 9 $ | $3$ | $18$ | $( 1,18,12,25,19, 8, 2,16,10,26,20, 9, 3,17,11,27,21, 7)( 4,23,13, 6,22,15, 5, 24,14)$ |
| $ 9, 9, 9 $ | $1$ | $9$ | $( 1,19,10, 3,21,12, 2,20,11)( 4,22,14, 6,24,13, 5,23,15)( 7,25,16, 9,27,18, 8, 26,17)$ |
| $ 9, 9, 9 $ | $1$ | $9$ | $( 1,20,12, 3,19,11, 2,21,10)( 4,23,13, 6,22,15, 5,24,14)( 7,26,18, 9,25,17, 8, 27,16)$ |
| $ 9, 9, 9 $ | $1$ | $9$ | $( 1,21,11, 3,20,10, 2,19,12)( 4,24,15, 6,23,14, 5,22,13)( 7,27,17, 9,26,16, 8, 25,18)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 4] |
| Character table: Data not available. |