Group action invariants
| Degree $n$ : | $26$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $F_{13}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,6,7,9,12,14,16,18,19,21,24,25)(2,4,5,8,10,11,13,15,17,20,22,23,26), (1,4,7,15,6,11,24,22,18,10,19,13)(2,3,8,16,5,12,23,21,17,9,20,14)(25,26) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $C_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $F_{13}$
Low degree siblings
13T6, 39T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $13$ | $3$ | $( 3, 7,19)( 4, 8,20)( 5,13,11)( 6,14,12)( 9,25,21)(10,26,22)(15,17,23) (16,18,24)$ |
| $ 6, 6, 6, 6, 1, 1 $ | $13$ | $6$ | $( 3, 9, 7,25,19,21)( 4,10, 8,26,20,22)( 5,17,13,23,11,15)( 6,18,14,24,12,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $13$ | $3$ | $( 3,19, 7)( 4,20, 8)( 5,11,13)( 6,12,14)( 9,21,25)(10,22,26)(15,23,17) (16,24,18)$ |
| $ 6, 6, 6, 6, 1, 1 $ | $13$ | $6$ | $( 3,21,19,25, 7, 9)( 4,22,20,26, 8,10)( 5,15,11,23,13,17)( 6,16,12,24,14,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $13$ | $2$ | $( 3,25)( 4,26)( 5,23)( 6,24)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,15) (14,16)$ |
| $ 12, 12, 2 $ | $13$ | $12$ | $( 1, 2)( 3, 5, 9,17, 7,13,25,23,19,11,21,15)( 4, 6,10,18, 8,14,26,24,20,12,22, 16)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $13$ | $4$ | $( 1, 2)( 3,11,25,17)( 4,12,26,18)( 5,21,23, 7)( 6,22,24, 8)( 9,15,19,13) (10,16,20,14)$ |
| $ 12, 12, 2 $ | $13$ | $12$ | $( 1, 2)( 3,13,21,17,19, 5,25,15, 7,11, 9,23)( 4,14,22,18,20, 6,26,16, 8,12,10, 24)$ |
| $ 12, 12, 2 $ | $13$ | $12$ | $( 1, 2)( 3,15,21,11,19,23,25,13, 7,17, 9, 5)( 4,16,22,12,20,24,26,14, 8,18,10, 6)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $13$ | $4$ | $( 1, 2)( 3,17,25,11)( 4,18,26,12)( 5, 7,23,21)( 6, 8,24,22)( 9,13,19,15) (10,14,20,16)$ |
| $ 12, 12, 2 $ | $13$ | $12$ | $( 1, 2)( 3,23, 9,11, 7,15,25, 5,19,17,21,13)( 4,24,10,12, 8,16,26, 6,20,18,22, 14)$ |
| $ 13, 13 $ | $12$ | $13$ | $( 1, 3, 6, 7, 9,12,14,16,18,19,21,24,25)( 2, 4, 5, 8,10,11,13,15,17,20,22,23, 26)$ |
Group invariants
| Order: | $156=2^{2} \cdot 3 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [156, 7] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2 .
3 1 1 1 1 1 1 1 1 1 1 1 1 .
13 1 . . . . . . . . . . . 1
1a 3a 6a 3b 6b 2a 12a 4a 12b 12c 4b 12d 13a
2P 1a 3b 3a 3a 3b 1a 6a 2a 6b 6b 2a 6a 13a
3P 1a 1a 2a 1a 2a 2a 4b 4b 4b 4a 4a 4a 13a
5P 1a 3b 6b 3a 6a 2a 12b 4a 12a 12d 4b 12c 13a
7P 1a 3a 6a 3b 6b 2a 12d 4b 12c 12b 4a 12a 13a
11P 1a 3b 6b 3a 6a 2a 12c 4b 12d 12a 4a 12b 13a
13P 1a 3a 6a 3b 6b 2a 12a 4a 12b 12c 4b 12d 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
X.3 1 1 -1 1 -1 -1 B B B -B -B -B 1
X.4 1 1 -1 1 -1 -1 -B -B -B B B B 1
X.5 1 A -/A /A -A -1 C B -/C /C -B -C 1
X.6 1 A -/A /A -A -1 -C -B /C -/C B C 1
X.7 1 /A -A A -/A -1 -/C B C -C -B /C 1
X.8 1 /A -A A -/A -1 /C -B -C C B -/C 1
X.9 1 A /A /A A 1 -A -1 -/A -/A -1 -A 1
X.10 1 /A A A /A 1 -/A -1 -A -A -1 -/A 1
X.11 1 A /A /A A 1 A 1 /A /A 1 A 1
X.12 1 /A A A /A 1 /A 1 A A 1 /A 1
X.13 12 . . . . . . . . . . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(4)
= -Sqrt(-1) = -i
C = -E(12)^11
|