Group action invariants
| Degree $n$ : | $26$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $C_2\times D_{13}.C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,19,3)(2,17,20,4)(5,11,16,9)(6,12,15,10)(7,22,13,25)(8,21,14,26)(23,24), (1,2)(3,25)(4,26)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,15)(14,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 52: $C_{13}:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $C_{13}:C_4$
Low degree siblings
26T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1 $ | $13$ | $4$ | $( 3,12,26,18)( 4,11,25,17)( 5,21,23, 7)( 6,22,24, 8)( 9,15,19,14)(10,16,20,13)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1 $ | $13$ | $4$ | $( 3,18,26,12)( 4,17,25,11)( 5, 7,23,21)( 6, 8,24,22)( 9,14,19,15)(10,13,20,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $13$ | $2$ | $( 3,26)( 4,25)( 5,23)( 6,24)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,16) (14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $13$ | $4$ | $( 1, 2)( 3,11,26,17)( 4,12,25,18)( 5,22,23, 8)( 6,21,24, 7)( 9,16,19,13) (10,15,20,14)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $13$ | $4$ | $( 1, 2)( 3,17,26,11)( 4,18,25,12)( 5, 8,23,22)( 6, 7,24,21)( 9,13,19,16) (10,14,20,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $13$ | $2$ | $( 1, 2)( 3,25)( 4,26)( 5,24)( 6,23)( 7,22)( 8,21)( 9,20)(10,19)(11,18)(12,17) (13,15)(14,16)$ |
| $ 26 $ | $4$ | $26$ | $( 1, 3, 6, 7, 9,12,14,16,17,20,22,23,25, 2, 4, 5, 8,10,11,13,15,18,19,21,24,26 )$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 4, 6, 8, 9,11,14,15,17,19,22,24,25)( 2, 3, 5, 7,10,12,13,16,18,20,21,23, 26)$ |
| $ 26 $ | $4$ | $26$ | $( 1, 5, 9,13,17,21,25, 3, 8,12,15,20,24, 2, 6,10,14,18,22,26, 4, 7,11,16,19,23 )$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 6, 9,14,17,22,25, 4, 8,11,15,19,24)( 2, 5,10,13,18,21,26, 3, 7,12,16,20, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 9,17,25, 8,15,24, 6,14,22, 4,11,19)( 2,10,18,26, 7,16,23, 5,13,21, 3,12, 20)$ |
| $ 26 $ | $4$ | $26$ | $( 1,10,17,26, 8,16,24, 5,14,21, 4,12,19, 2, 9,18,25, 7,15,23, 6,13,22, 3,11,20 )$ |
Group invariants
| Order: | $104=2^{3} \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [104, 12] |
| Character table: |
2 3 3 3 3 3 3 3 3 1 1 1 1 1 1
13 1 . . . 1 . . . 1 1 1 1 1 1
1a 4a 4b 2a 2b 4c 4d 2c 26a 13a 26b 13b 13c 26c
2P 1a 2a 2a 1a 1a 2a 2a 1a 13b 13b 13c 13c 13a 13a
3P 1a 4b 4a 2a 2b 4d 4c 2c 26b 13b 26c 13c 13a 26a
5P 1a 4a 4b 2a 2b 4c 4d 2c 26a 13a 26b 13b 13c 26c
7P 1a 4b 4a 2a 2b 4d 4c 2c 26c 13c 26a 13a 13b 26b
11P 1a 4b 4a 2a 2b 4d 4c 2c 26b 13b 26c 13c 13a 26a
13P 1a 4a 4b 2a 2b 4c 4d 2c 2b 1a 2b 1a 1a 2b
17P 1a 4a 4b 2a 2b 4c 4d 2c 26c 13c 26a 13a 13b 26b
19P 1a 4b 4a 2a 2b 4d 4c 2c 26c 13c 26a 13a 13b 26b
23P 1a 4b 4a 2a 2b 4d 4c 2c 26b 13b 26c 13c 13a 26a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1
X.3 1 -1 -1 1 1 -1 -1 1 1 1 1 1 1 1
X.4 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1
X.5 1 A -A -1 -1 -A A 1 -1 1 -1 1 1 -1
X.6 1 -A A -1 -1 A -A 1 -1 1 -1 1 1 -1
X.7 1 A -A -1 1 A -A -1 1 1 1 1 1 1
X.8 1 -A A -1 1 -A A -1 1 1 1 1 1 1
X.9 4 . . . 4 . . . B B C C D D
X.10 4 . . . 4 . . . C C D D B B
X.11 4 . . . 4 . . . D D B B C C
X.12 4 . . . -4 . . . -B B -C C D -D
X.13 4 . . . -4 . . . -C C -D D B -B
X.14 4 . . . -4 . . . -D D -B B C -C
A = -E(4)
= -Sqrt(-1) = -i
B = E(13)^2+E(13)^3+E(13)^10+E(13)^11
C = E(13)^4+E(13)^6+E(13)^7+E(13)^9
D = E(13)+E(13)^5+E(13)^8+E(13)^12
|