Show commands: Magma
Group invariants
| Abstract group: | $C_{13}:C_6$ |
| |
| Order: | $78=2 \cdot 3 \cdot 13$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $26$ |
| |
| Transitive number $t$: | $5$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,10,4)(2,9,3)(5,19,16)(6,20,15)(7,12,22)(8,11,21)(17,24,26)(18,23,25)$, $(1,2)(3,7,19,4,8,20)(5,13,11,6,14,12)(9,25,21,10,26,22)(15,17,23,16,18,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $39$: $C_{13}:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $C_{13}:C_3$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{13}$ | $1$ | $2$ | $13$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$ |
| 3A1 | $3^{8},1^{2}$ | $13$ | $3$ | $16$ | $( 1,18,13)( 2,17,14)( 3,24, 5)( 4,23, 6)( 7,10,15)( 8, 9,16)(11,21,26)(12,22,25)$ |
| 3A-1 | $3^{8},1^{2}$ | $13$ | $3$ | $16$ | $( 1,13,18)( 2,14,17)( 3, 5,24)( 4, 6,23)( 7,15,10)( 8,16, 9)(11,26,21)(12,25,22)$ |
| 6A1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,14,18, 2,13,17)( 3, 6,24, 4, 5,23)( 7,16,10, 8,15, 9)(11,25,21,12,26,22)(19,20)$ |
| 6A-1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,17,13, 2,18,14)( 3,23, 5, 4,24, 6)( 7, 9,15, 8,10,16)(11,22,26,12,21,25)(19,20)$ |
| 13A1 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1,25,23,22,20,18,15,13,12,10, 7, 6, 4)( 2,26,24,21,19,17,16,14,11, 9, 8, 5, 3)$ |
| 13A-1 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1, 4, 6, 7,10,12,13,15,18,20,22,23,25)( 2, 3, 5, 8, 9,11,14,16,17,19,21,24,26)$ |
| 13A2 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1,23,20,15,12, 7, 4,25,22,18,13,10, 6)( 2,24,19,16,11, 8, 3,26,21,17,14, 9, 5)$ |
| 13A-2 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1, 6,10,13,18,22,25, 4, 7,12,15,20,23)( 2, 5, 9,14,17,21,26, 3, 8,11,16,19,24)$ |
| 26A1 | $26$ | $3$ | $26$ | $25$ | $( 1,14,25,11,23, 9,22, 8,20, 5,18, 3,15, 2,13,26,12,24,10,21, 7,19, 6,17, 4,16)$ |
| 26A-1 | $26$ | $3$ | $26$ | $25$ | $( 1,24,20,16,12, 8, 4,26,22,17,13, 9, 6, 2,23,19,15,11, 7, 3,25,21,18,14,10, 5)$ |
| 26A5 | $26$ | $3$ | $26$ | $25$ | $( 1, 9,18,26, 7,16,23, 5,13,21, 4,11,20, 2,10,17,25, 8,15,24, 6,14,22, 3,12,19)$ |
| 26A-5 | $26$ | $3$ | $26$ | $25$ | $( 1, 8,13,19,25, 5,12,17,23, 3,10,16,22, 2, 7,14,20,26, 6,11,18,24, 4, 9,15,21)$ |
Malle's constant $a(G)$: $1/13$
Character table
| 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | ||
| Size | 1 | 1 | 13 | 13 | 13 | 13 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 13A2 | 13A-2 | 13A-1 | 13A1 | 13A1 | 13A-1 | 13A2 | 13A-2 | |
| 3 P | 1A | 2A | 1A | 1A | 2A | 2A | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | |
| 13 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
| Type | |||||||||||||||
| 78.2.1a | R | ||||||||||||||
| 78.2.1b | R | ||||||||||||||
| 78.2.1c1 | C | ||||||||||||||
| 78.2.1c2 | C | ||||||||||||||
| 78.2.1d1 | C | ||||||||||||||
| 78.2.1d2 | C | ||||||||||||||
| 78.2.3a1 | C | ||||||||||||||
| 78.2.3a2 | C | ||||||||||||||
| 78.2.3a3 | C | ||||||||||||||
| 78.2.3a4 | C | ||||||||||||||
| 78.2.3b1 | C | ||||||||||||||
| 78.2.3b2 | C | ||||||||||||||
| 78.2.3b3 | C | ||||||||||||||
| 78.2.3b4 | C |
Regular extensions
Data not computed