Show commands: Magma
                    
            
Group invariants
| Abstract group: | $\SL(3,3):C_2$ |  | |
| Order: | $11232=2^{5} \cdot 3^{3} \cdot 13$ |  | |
| Cyclic: | no |  | |
| Abelian: | no |  | |
| Solvable: | no |  | |
| Nilpotency class: | not nilpotent |  | 
Group action invariants
| Degree $n$: | $26$ |  | |
| Transitive number $t$: | $49$ |  | |
| Parity: | $-1$ |  | |
| Primitive: | no |  | |
| $\card{\Aut(F/K)}$: | $1$ |  | |
| Generators: | $(1,22,8,25,5,23)(2,26,13,21,4,16)(3,24,9,17,11,19)(6,18)(7,20,10,14,12,15)$, $(1,24,12,23,3,17,10,25,13,21,5,18)(2,20)(4,14,8,16,11,26)(6,15,7,19)(9,22)$ |  | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{8},1^{10}$ | $117$ | $2$ | $8$ | $( 1, 3)( 4,11)( 5,10)( 6, 7)(14,16)(17,18)(21,25)(23,24)$ | 
| 2B | $2^{13}$ | $234$ | $2$ | $13$ | $( 1,15)( 2,17)( 3,16)( 4,23)( 5,25)( 6,21)( 7,22)( 8,26)( 9,24)(10,14)(11,19)(12,20)(13,18)$ | 
| 3A | $3^{6},1^{8}$ | $104$ | $3$ | $12$ | $( 2, 9, 6)( 3, 8,10)( 4,13, 5)(14,20,25)(15,18,16)(19,23,26)$ | 
| 3B | $3^{8},1^{2}$ | $624$ | $3$ | $16$ | $( 1, 8, 7)( 2, 9,13)( 3,12, 6)( 5,10,11)(14,19,25)(15,26,22)(16,20,21)(17,24,18)$ | 
| 4A | $4^{4},2^{5}$ | $234$ | $4$ | $17$ | $( 1,21)( 2,20,10,23)( 3,26, 9,25)( 4,16)( 5,18)( 6,14, 8,19)( 7,24)(11,17,12,22)(13,15)$ | 
| 4B | $4^{4},2^{4},1^{2}$ | $702$ | $4$ | $16$ | $( 1, 4, 3,11)( 2,12)( 5, 7,10, 6)( 8,13)(14,24,16,23)(15,20)(17,25,18,21)(19,22)$ | 
| 6A | $6^{2},3^{2},2^{2},1^{4}$ | $936$ | $6$ | $16$ | $( 2, 8, 9,10, 6, 3)( 4, 5,13)(11,12)(14,26,20,19,25,23)(15,16,18)(17,22)$ | 
| 6B | $6^{4},2$ | $1872$ | $6$ | $21$ | $( 1,22, 8,15, 7,26)( 2,18, 9,17,13,24)( 3,21,12,16, 6,20)( 4,23)( 5,19,10,25,11,14)$ | 
| 8A | $8^{2},4^{2},1^{2}$ | $1404$ | $8$ | $20$ | $( 1, 7, 4,10, 3, 6,11, 5)( 2, 8,12,13)(14,18,24,21,16,17,23,25)(15,22,20,19)$ | 
| 8B | $8^{2},4^{2},2$ | $1404$ | $8$ | $21$ | $( 1,18, 6,23, 4,20,11,24)( 2,17,13,19)( 3,21, 9,14, 7,15, 5,22)( 8,25,12,16)(10,26)$ | 
| 12A1 | $12,6,4,2^{2}$ | $936$ | $12$ | $21$ | $( 1,21)( 2,26, 8,20, 9,19,10,25, 6,23, 3,14)( 4,15, 5,16,13,18)( 7,24)(11,22,12,17)$ | 
| 12A5 | $12,6,4,2^{2}$ | $936$ | $12$ | $21$ | $( 1,21)( 2,19, 3,20, 6,26,10,14, 9,23, 8,25)( 4,18,13,16, 5,15)( 7,24)(11,22,12,17)$ | 
| 13A1 | $13^{2}$ | $864$ | $13$ | $24$ | $( 1, 9, 7, 3, 6, 8, 4, 5,11,13, 2,10,12)(14,25,26,16,19,24,15,22,17,23,18,20,21)$ | 
| 13A2 | $13^{2}$ | $864$ | $13$ | $24$ | $( 1, 7, 6, 4,11, 2,12, 9, 3, 8, 5,13,10)(14,26,19,15,17,18,21,25,16,24,22,23,20)$ | 
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 12A1 | 12A5 | 13A1 | 13A2 | ||
| Size | 1 | 117 | 234 | 104 | 624 | 234 | 702 | 936 | 1872 | 1404 | 1404 | 936 | 936 | 864 | 864 | |
| 2 P | 1A | 1A | 1A | 3A | 3B | 2A | 2A | 3A | 3B | 4B | 4B | 6A | 6A | 13A2 | 13A1 | |
| 3 P | 1A | 2A | 2B | 1A | 1A | 4A | 4B | 2A | 2B | 8A | 8B | 4A | 4A | 13A1 | 13A2 | |
| 13 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 12A1 | 12A5 | 1A | 1A | |
| Type | ||||||||||||||||
| 11232.b.1a | R | |||||||||||||||
| 11232.b.1b | R | |||||||||||||||
| 11232.b.12a1 | R | |||||||||||||||
| 11232.b.12a2 | R | |||||||||||||||
| 11232.b.13a | R | |||||||||||||||
| 11232.b.13b | R | |||||||||||||||
| 11232.b.26a | R | |||||||||||||||
| 11232.b.26b | R | |||||||||||||||
| 11232.b.27a | R | |||||||||||||||
| 11232.b.27b | R | |||||||||||||||
| 11232.b.32a1 | R | |||||||||||||||
| 11232.b.32a2 | R | |||||||||||||||
| 11232.b.39a | R | |||||||||||||||
| 11232.b.39b | R | |||||||||||||||
| 11232.b.52a | R | 
Regular extensions
Data not computed
