Properties

Label 26T49
Order \(11232\)
n \(26\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $26$
Transitive number $t$ :  $49$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,22,8,25,5,23)(2,26,13,21,4,16)(3,24,9,17,11,19)(6,18)(7,20,10,14,12,15), (1,24,12,23,3,17,10,25,13,21,5,18)(2,20)(4,14,8,16,11,26)(6,15,7,19)(9,22)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 13: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $117$ $2$ $( 1, 9)( 4, 6)( 5,11)( 7,10)(16,22)(18,20)(19,24)(21,25)$
$ 4, 4, 4, 4, 2, 2, 2, 2, 1, 1 $ $702$ $4$ $( 1, 5, 9,11)( 2,13)( 4, 7, 6,10)( 8,12)(14,15)(16,21,22,25)(17,23) (18,19,20,24)$
$ 8, 8, 4, 4, 1, 1 $ $1404$ $8$ $( 1, 7, 5, 6, 9,10,11, 4)( 2,12,13, 8)(14,23,15,17)(16,24,21,18,22,19,25,20)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ $624$ $3$ $( 1, 9, 3)( 2, 7,10)( 4, 6, 8)( 5,11,12)(14,24,19)(16,22,17)(18,20,23) (21,25,26)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $234$ $2$ $( 1,18)( 2,20)( 3,19)( 4,26)( 5,15)( 6,24)( 7,25)( 8,16)( 9,14)(10,17)(11,22) (12,23)(13,21)$
$ 6, 6, 6, 6, 2 $ $1872$ $6$ $( 1,17,12,18,10,23)( 2,14,11,20, 9,22)( 3,24, 8,19, 6,16)( 4,15, 7,26, 5,25) (13,21)$
$ 8, 8, 4, 4, 2 $ $1404$ $8$ $( 1,23)( 2,26,13,25,10,19, 9,22)( 3,18, 4,24)( 5,20, 7,14, 8,21,11,17) ( 6,16,12,15)$
$ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ $104$ $3$ $( 1, 4,10)( 3, 5,11)( 6, 9, 7)(15,21,25)(17,18,20)(19,24,23)$
$ 4, 4, 4, 4, 2, 2, 2, 2, 2 $ $234$ $4$ $( 1,25, 7,20)( 2,26)( 3,23)( 4,15, 6,17)( 5,19)( 8,16,13,22)( 9,18,10,21) (11,24)(12,14)$
$ 6, 6, 3, 3, 2, 2, 1, 1, 1, 1 $ $936$ $6$ $( 1, 9, 4, 7,10, 6)( 3,11, 5)( 8,13)(15,20,21,17,25,18)(16,22)(19,23,24)$
$ 12, 6, 4, 2, 2 $ $936$ $12$ $( 1,17, 9,25, 4,18, 7,15,10,20, 6,21)( 2,26)( 3,19,11,23, 5,24)( 8,22,13,16) (12,14)$
$ 12, 6, 4, 2, 2 $ $936$ $12$ $( 1,15, 9,20, 4,21, 7,17,10,25, 6,18)( 2,26)( 3,19,11,23, 5,24)( 8,16,13,22) (12,14)$
$ 13, 13 $ $864$ $13$ $( 1,10,12, 3,13,11, 7, 8, 2, 5, 4, 9, 6)(14,21,20,22,18,16,19,23,15,25,24,17, 26)$
$ 13, 13 $ $864$ $13$ $( 1, 2, 3, 9, 7,10, 5,13, 6, 8,12, 4,11)(14,15,22,17,19,21,25,18,26,23,20,24, 16)$

Group invariants

Order:  $11232=2^{5} \cdot 3^{3} \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table:   
      2  5  5  2  4  2   2   2  4  3  4  1   .   .  1  3
      3  3  1  3  1  1   1   1  .  .  1  2   .   .  1  .
     13  1  .  .  .  .   .   .  .  .  .  .   1   1  .  .

        1a 2a 3a 4a 6a 12a 12b 4b 8a 2b 3b 13a 13b 6b 8b
     2P 1a 1a 3a 2a 3a  6a  6a 2a 4b 1a 3b 13b 13a 3b 4b
     3P 1a 2a 1a 4a 2a  4a  4a 4b 8a 2b 1a 13a 13b 2b 8b
     5P 1a 2a 3a 4a 6a 12b 12a 4b 8a 2b 3b 13b 13a 6b 8b
     7P 1a 2a 3a 4a 6a 12b 12a 4b 8a 2b 3b 13b 13a 6b 8b
    11P 1a 2a 3a 4a 6a 12a 12b 4b 8a 2b 3b 13b 13a 6b 8b
    13P 1a 2a 3a 4a 6a 12a 12b 4b 8a 2b 3b  1a  1a 6b 8b

X.1      1  1  1  1  1   1   1  1  1  1  1   1   1  1  1
X.2      1  1  1 -1  1  -1  -1  1  1 -1  1   1   1 -1 -1
X.3     12  4  3  .  1   A  -A  .  .  .  .  -1  -1  .  .
X.4     12  4  3  .  1  -A   A  .  .  .  .  -1  -1  .  .
X.5     13 -3  4 -3  .   .   .  1 -1  1  1   .   .  1 -1
X.6     13 -3  4  3  .   .   .  1 -1 -1  1   .   . -1  1
X.7     26  2 -1 -2 -1   1   1  2  .  2 -1   .   . -1  .
X.8     26  2 -1  2 -1  -1  -1  2  . -2 -1   .   .  1  .
X.9     27  3  . -3  .   .   . -1 -1 -3  .   1   1  .  1
X.10    27  3  .  3  .   .   . -1 -1  3  .   1   1  . -1
X.11    32  . -4  .  .   .   .  .  .  .  2   B  *B  .  .
X.12    32  . -4  .  .   .   .  .  .  .  2  *B   B  .  .
X.13    39 -1  3 -1 -1  -1  -1 -1  1  3  .   .   .  .  1
X.14    39 -1  3  1 -1   1   1 -1  1 -3  .   .   .  . -1
X.15    52 -4 -2  .  2   .   .  .  .  . -2   .   .  .  .

A = -E(12)^7+E(12)^11
  = Sqrt(3) = r3
B = E(13)^2+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^11
  = (-1-Sqrt(13))/2 = -1-b13