Group action invariants
| Degree $n$ : | $26$ | |
| Transitive number $t$ : | $49$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,22,8,25,5,23)(2,26,13,21,4,16)(3,24,9,17,11,19)(6,18)(7,20,10,14,12,15), (1,24,12,23,3,17,10,25,13,21,5,18)(2,20)(4,14,8,16,11,26)(6,15,7,19)(9,22) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $117$ | $2$ | $( 2, 4)( 5, 6)( 9,13)(11,12)(14,23)(19,25)(20,26)(21,22)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $104$ | $3$ | $( 3, 7, 8)( 5, 9,12)( 6,13,11)(14,22,26)(15,24,18)(20,23,21)$ |
| $ 6, 6, 3, 3, 2, 2, 1, 1, 1, 1 $ | $936$ | $6$ | $( 2, 4)( 3, 8, 7)( 5,11, 9, 6,12,13)(14,20,22,23,26,21)(15,18,24)(19,25)$ |
| $ 4, 4, 4, 4, 2, 2, 2, 2, 2 $ | $234$ | $4$ | $( 1,17)( 2,25, 4,19)( 3,15)( 5,26, 6,20)( 7,24)( 8,18)( 9,14,13,23)(10,16) (11,21,12,22)$ |
| $ 12, 6, 4, 2, 2 $ | $936$ | $12$ | $( 1,17)( 2,19, 4,25)( 3,18, 7,15, 8,24)( 5,21,13,26,12,23, 6,22, 9,20,11,14) (10,16)$ |
| $ 12, 6, 4, 2, 2 $ | $936$ | $12$ | $( 1,17)( 2,25, 4,19)( 3,18, 7,15, 8,24)( 5,22,13,20,12,14, 6,21, 9,26,11,23) (10,16)$ |
| $ 4, 4, 4, 4, 2, 2, 2, 2, 1, 1 $ | $702$ | $4$ | $( 2,12, 4,11)( 3, 8)( 5,13, 6, 9)( 7,10)(14,26,23,20)(15,18)(16,24) (19,21,25,22)$ |
| $ 8, 8, 4, 4, 2 $ | $1404$ | $8$ | $( 1,17)( 2,26,12,23, 4,20,11,14)( 3,16, 8,24)( 5,22,13,19, 6,21, 9,25) ( 7,15,10,18)$ |
| $ 13, 13 $ | $864$ | $13$ | $( 1, 3, 5, 8, 7,13, 2, 6,10, 4,12, 9,11)(14,18,17,21,26,22,25,16,23,19,20,24, 15)$ |
| $ 13, 13 $ | $864$ | $13$ | $( 1,10, 8, 9, 2, 3, 4, 7,11, 6, 5,12,13)(14,23,21,24,25,18,19,26,15,16,17,20, 22)$ |
| $ 8, 8, 4, 4, 1, 1 $ | $1404$ | $8$ | $( 1, 3,12, 9, 6,10, 2,11)( 4, 5, 7,13)(14,24,15,23,19,22,25,16)(17,26,20,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $234$ | $2$ | $( 1,15)( 2,17)( 3,16)( 4,23)( 5,19)( 6,20)( 7,26)( 8,22)( 9,18)(10,14)(11,25) (12,21)(13,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $624$ | $3$ | $( 2, 7, 8)( 3,13, 9)( 4,11, 5)( 6,10,12)(14,21,20)(16,24,18)(17,26,22) (19,23,25)$ |
| $ 6, 6, 6, 6, 2 $ | $1872$ | $6$ | $( 1,15)( 2,22, 7,17, 8,26)( 3,18,13,16, 9,24)( 4,19,11,23, 5,25) ( 6,21,10,20,12,14)$ |
Group invariants
| Order: | $11232=2^{5} \cdot 3^{3} \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 5 5 2 4 2 2 2 4 3 3 . . 4 1 1
3 3 1 3 1 1 1 1 . . . . . 1 2 1
13 1 . . . . . . . . . 1 1 . . .
1a 2a 3a 4a 6a 12a 12b 4b 8a 8b 13a 13b 2b 3b 6b
2P 1a 1a 3a 2a 3a 6a 6a 2a 4b 4b 13b 13a 1a 3b 3b
3P 1a 2a 1a 4a 2a 4a 4a 4b 8a 8b 13a 13b 2b 1a 2b
5P 1a 2a 3a 4a 6a 12b 12a 4b 8a 8b 13b 13a 2b 3b 6b
7P 1a 2a 3a 4a 6a 12b 12a 4b 8a 8b 13b 13a 2b 3b 6b
11P 1a 2a 3a 4a 6a 12a 12b 4b 8a 8b 13b 13a 2b 3b 6b
13P 1a 2a 3a 4a 6a 12a 12b 4b 8a 8b 1a 1a 2b 3b 6b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1
X.3 12 4 3 . 1 A -A . . . -1 -1 . . .
X.4 12 4 3 . 1 -A A . . . -1 -1 . . .
X.5 13 -3 4 -3 . . . 1 -1 -1 . . 1 1 1
X.6 13 -3 4 3 . . . 1 -1 1 . . -1 1 -1
X.7 26 2 -1 -2 -1 1 1 2 . . . . 2 -1 -1
X.8 26 2 -1 2 -1 -1 -1 2 . . . . -2 -1 1
X.9 27 3 . -3 . . . -1 -1 1 1 1 -3 . .
X.10 27 3 . 3 . . . -1 -1 -1 1 1 3 . .
X.11 32 . -4 . . . . . . . B *B . 2 .
X.12 32 . -4 . . . . . . . *B B . 2 .
X.13 39 -1 3 -1 -1 -1 -1 -1 1 1 . . 3 . .
X.14 39 -1 3 1 -1 1 1 -1 1 -1 . . -3 . .
X.15 52 -4 -2 . 2 . . . . . . . . -2 .
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
B = E(13)^2+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^11
= (-1-Sqrt(13))/2 = -1-b13
|