Properties

Label 26T47
Order \(11232\)
n \(26\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $26$
Transitive number $t$ :  $47$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,6,17,12,7,22,20)(2,13,5,18,11,8,21,19)(3,24,16,25,4,23,15,26)(9,10), (1,3,26,7,16,13,22,5)(2,4,25,8,15,14,21,6)(9,17,20,24,10,18,19,23)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5616:  $\PSL(3,3)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 13: $\PSL(3,3)$

Low degree siblings

26T47, 26T48 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $117$ $2$ $( 1,12)( 2,11)( 3,21)( 4,22)( 5, 6)( 7,25)( 8,26)(13,14)(15,16)(17,24)(18,23) (19,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $117$ $2$ $( 1,11)( 2,12)( 3,22)( 4,21)( 7,26)( 8,25)( 9,10)(17,23)(18,24)$
$ 4, 4, 4, 4, 4, 4, 1, 1 $ $702$ $4$ $( 1,25,12, 7)( 2,26,11, 8)( 3,17,21,24)( 4,18,22,23)( 5,19, 6,20)(13,16,14,15)$
$ 4, 4, 4, 4, 4, 4, 2 $ $702$ $4$ $( 1,26,12, 8)( 2,25,11, 7)( 3,18,21,23)( 4,17,22,24)( 5,20, 6,19)( 9,10) (13,15,14,16)$
$ 8, 8, 8, 1, 1 $ $702$ $8$ $( 1, 3,25,17,12,21, 7,24)( 2, 4,26,18,11,22, 8,23)( 5,14,19,15, 6,13,20,16)$
$ 8, 8, 8, 2 $ $702$ $8$ $( 1, 4,25,18,12,22, 7,23)( 2, 3,26,17,11,21, 8,24)( 5,13,19,16, 6,14,20,15) ( 9,10)$
$ 8, 8, 8, 1, 1 $ $702$ $8$ $( 1,24, 7,21,12,17,25, 3)( 2,23, 8,22,11,18,26, 4)( 5,16,20,13, 6,15,19,14)$
$ 8, 8, 8, 2 $ $702$ $8$ $( 1,23, 7,22,12,18,25, 4)( 2,24, 8,21,11,17,26, 3)( 5,15,20,14, 6,16,19,13) ( 9,10)$
$ 26 $ $432$ $26$ $( 1,10,13,12, 7, 3, 6,19,22,16,26,17,23, 2, 9,14,11, 8, 4, 5,20,21,15,25,18,24 )$
$ 13, 13 $ $432$ $13$ $( 1, 9,13,11, 7, 4, 6,20,22,15,26,18,23)( 2,10,14,12, 8, 3, 5,19,21,16,25,17, 24)$
$ 26 $ $432$ $26$ $( 1,21,11,17, 6,10,15, 8,23,19,13,25, 4, 2,22,12,18, 5, 9,16, 7,24,20,14,26, 3 )$
$ 13, 13 $ $432$ $13$ $( 1,22,11,18, 6, 9,15, 7,23,20,13,26, 4)( 2,21,12,17, 5,10,16, 8,24,19,14,25, 3)$
$ 26 $ $432$ $26$ $( 1,24,18,25,15,21,20, 5, 4, 8,11,14, 9, 2,23,17,26,16,22,19, 6, 3, 7,12,13,10 )$
$ 13, 13 $ $432$ $13$ $( 1,23,18,26,15,22,20, 6, 4, 7,11,13, 9)( 2,24,17,25,16,21,19, 5, 3, 8,12,14, 10)$
$ 26 $ $432$ $26$ $( 1, 3,26,14,20,24, 7,16, 9, 5,18,12,22, 2, 4,25,13,19,23, 8,15,10, 6,17,11,21 )$
$ 13, 13 $ $432$ $13$ $( 1, 4,26,13,20,23, 7,15, 9, 6,18,11,22)( 2, 3,25,14,19,24, 8,16,10, 5,17,12, 21)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ $624$ $3$ $( 1,21,24)( 2,22,23)( 3,20,26)( 4,19,25)( 5, 9,18)( 6,10,17)( 7,11,15) ( 8,12,16)$
$ 6, 6, 6, 6, 2 $ $624$ $6$ $( 1,22,24, 2,21,23)( 3,19,26, 4,20,25)( 5,10,18, 6, 9,17)( 7,12,15, 8,11,16) (13,14)$
$ 6, 6, 6, 2, 2, 2, 2 $ $104$ $6$ $( 1, 4, 7, 2, 3, 8)( 5,14,16, 6,13,15)( 9,10)(11,21,26,12,22,25)(17,18)(19,20) (23,24)$
$ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ $104$ $3$ $( 1, 3, 7)( 2, 4, 8)( 5,13,16)( 6,14,15)(11,22,26)(12,21,25)$
$ 6, 6, 3, 3, 2, 2, 2, 1, 1 $ $936$ $6$ $( 1,26, 3,11, 7,22)( 2,25, 4,12, 8,21)( 5,16,13)( 6,15,14)( 9,10)(17,23) (18,24)$
$ 6, 6, 6, 2, 2, 2, 1, 1 $ $936$ $6$ $( 1,25, 3,12, 7,21)( 2,26, 4,11, 8,22)( 5,15,13, 6,16,14)(17,24)(18,23)(19,20)$

Group invariants

Order:  $11232=2^{5} \cdot 3^{3} \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.