Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_{13}^2:(C_6\times S_3)$ |  | |
| Order: | $6084=2^{2} \cdot 3^{2} \cdot 13^{2}$ |  | |
| Cyclic: | no |  | |
| Abelian: | no |  | |
| Solvable: | yes |  | |
| Nilpotency class: | not nilpotent |  | 
Group action invariants
| Degree $n$: | $26$ |  | |
| Transitive number $t$: | $40$ |  | |
| Parity: | $-1$ |  | |
| Primitive: | no |  | |
| $\card{\Aut(F/K)}$: | $1$ |  | |
| Generators: | $(1,19,5,14,9,22,13,17,4,25,8,20,12,15,3,23,7,18,11,26,2,21,6,16,10,24)$, $(1,19,11,25,10,14)(2,17,7,20,13,21)(3,15)(4,26,12,23,6,22)(5,24,8,18,9,16)$ |  | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 3 $12$: $D_{6}$, $C_6\times C_2$ $18$: $S_3\times C_3$ $36$: $C_6\times S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
39T46 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{13}$ | $39$ | $2$ | $13$ | $( 1,14)( 2,19)( 3,24)( 4,16)( 5,21)( 6,26)( 7,18)( 8,23)( 9,15)(10,20)(11,25)(12,17)(13,22)$ | 
| 2B | $2^{13}$ | $39$ | $2$ | $13$ | $( 1,15)( 2,22)( 3,16)( 4,23)( 5,17)( 6,24)( 7,18)( 8,25)( 9,19)(10,26)(11,20)(12,14)(13,21)$ | 
| 2C | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)(14,19)(15,18)(16,17)(20,26)(21,25)(22,24)$ | 
| 3A1 | $3^{4},1^{14}$ | $26$ | $3$ | $8$ | $( 1, 6,12)( 3,11, 5)( 4, 7, 8)( 9,13,10)$ | 
| 3A-1 | $3^{4},1^{14}$ | $26$ | $3$ | $8$ | $( 1,12, 6)( 3, 5,11)( 4, 8, 7)( 9,10,13)$ | 
| 3B1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 9, 7)( 2,12, 3)( 4, 5, 8)( 6,11,13)(14,23,24)(15,26,20)(17,19,25)(18,22,21)$ | 
| 3B-1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 7, 9)( 2, 3,12)( 4, 8, 5)( 6,13,11)(14,24,23)(15,20,26)(17,25,19)(18,21,22)$ | 
| 3C | $3^{8},1^{2}$ | $338$ | $3$ | $16$ | $( 1,10,11)( 2,13, 7)( 4, 6,12)( 5, 9, 8)(14,24,23)(15,20,26)(17,25,19)(18,21,22)$ | 
| 6A1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 1,12, 4,11,13, 8)( 2, 3, 7,10, 9, 5)(14,26,22,19,20,24)(15,17,25,18,16,21)$ | 
| 6A-1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 1, 8,13,11, 4,12)( 2, 5, 9,10, 7, 3)(14,24,20,19,22,26)(15,21,16,18,25,17)$ | 
| 6B | $6^{4},1^{2}$ | $338$ | $6$ | $20$ | $( 1, 8,10, 5,11, 9)( 2,12,13, 4, 7, 6)(14,22,24,18,23,21)(15,19,20,17,26,25)$ | 
| 6C1 | $6^{2},2^{6},1^{2}$ | $338$ | $6$ | $16$ | $( 1, 5, 6, 3,12,11)( 4, 9, 7,13, 8,10)(14,24)(15,23)(16,22)(17,21)(18,20)(25,26)$ | 
| 6C-1 | $6^{2},2^{6},1^{2}$ | $338$ | $6$ | $16$ | $( 1,11,12, 3, 6, 5)( 4,10, 8,13, 7, 9)(14,24)(15,23)(16,22)(17,21)(18,20)(25,26)$ | 
| 6D1 | $6^{4},2$ | $507$ | $6$ | $21$ | $( 1,23, 9,24, 7,14)( 2,15,12,26, 3,20)( 4,25, 5,17, 8,19)( 6,22,11,21,13,18)(10,16)$ | 
| 6D-1 | $6^{4},2$ | $507$ | $6$ | $21$ | $( 1,14, 7,24, 9,23)( 2,20, 3,26,12,15)( 4,19, 8,17, 5,25)( 6,18,13,21,11,22)(10,16)$ | 
| 6E1 | $6^{4},2$ | $507$ | $6$ | $21$ | $( 1,22, 5,15, 2,17)( 3,25,10,16, 8,26)( 4,20, 6,23,11,24)( 7,18)( 9,21,12,19,13,14)$ | 
| 6E-1 | $6^{4},2$ | $507$ | $6$ | $21$ | $( 1,17, 2,15, 5,22)( 3,26, 8,16,10,25)( 4,24,11,23, 6,20)( 7,18)( 9,14,13,19,12,21)$ | 
| 13A1 | $13,1^{13}$ | $12$ | $13$ | $12$ | $(14,23,19,15,24,20,16,25,21,17,26,22,18)$ | 
| 13A2 | $13,1^{13}$ | $12$ | $13$ | $12$ | $(14,19,24,16,21,26,18,23,15,20,25,17,22)$ | 
| 13B1 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ | 
| 13B2 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ | 
| 13C1 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ | 
| 13C2 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ | 
| 13D1 | $13^{2}$ | $36$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ | 
| 13D2 | $13^{2}$ | $36$ | $13$ | $24$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ | 
| 26A1 | $26$ | $234$ | $26$ | $25$ | $( 1,23, 2,15, 3,20, 4,25, 5,17, 6,22, 7,14, 8,19, 9,24,10,16,11,21,12,26,13,18)$ | 
| 26A5 | $26$ | $234$ | $26$ | $25$ | $( 1,20, 6,19,11,18, 3,17, 8,16,13,15, 5,14,10,26, 2,25, 7,24,12,23, 4,22, 9,21)$ | 
| 26B1 | $26$ | $234$ | $26$ | $25$ | $( 1,14, 6,15,11,16, 3,17, 8,18,13,19, 5,20,10,21, 2,22, 7,23,12,24, 4,25, 9,26)$ | 
| 26B5 | $26$ | $234$ | $26$ | $25$ | $( 1,16,13,21,12,26,11,18,10,23, 9,15, 8,20, 7,25, 6,17, 5,22, 4,14, 3,19, 2,24)$ | 
| 39A1 | $13,3^{4},1$ | $156$ | $39$ | $20$ | $( 2,10, 4)( 3, 6, 7)( 5,11,13)( 8,12, 9)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ | 
| 39A-1 | $13,3^{4},1$ | $156$ | $39$ | $20$ | $( 2, 4,10)( 3, 7, 6)( 5,13,11)( 8, 9,12)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ | 
| 39A2 | $13,3^{4},1$ | $156$ | $39$ | $20$ | $( 2, 4,10)( 3, 7, 6)( 5,13,11)( 8, 9,12)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ | 
| 39A-2 | $13,3^{4},1$ | $156$ | $39$ | $20$ | $( 2,10, 4)( 3, 6, 7)( 5,11,13)( 8,12, 9)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ | 
Malle's constant $a(G)$: $1/8$
Character table
34 x 34 character table
Regular extensions
Data not computed
