Show commands: Magma
Group invariants
Abstract group: | $C_{13}^2:D_{12}$ |
| |
Order: | $4056=2^{3} \cdot 3 \cdot 13^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $36$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,25,8,23,2,21,9,19,3,17,10,15,4,26,11,24,5,22,12,20,6,18,13,16,7,14)$, $(1,20,11,18,8,16,5,14,2,25,12,23,9,21,6,19,3,17,13,15,10,26,7,24,4,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $24$: $D_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $78$ | $2$ | $13$ | $( 1,18)( 2,25)( 3,19)( 4,26)( 5,20)( 6,14)( 7,21)( 8,15)( 9,22)(10,16)(11,23)(12,17)(13,24)$ |
2B | $2^{13}$ | $78$ | $2$ | $13$ | $( 1,23)( 2,24)( 3,25)( 4,26)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20)(12,21)(13,22)$ |
2C | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,13)(10,12)(14,24)(15,23)(16,22)(17,21)(18,20)(25,26)$ |
3A | $3^{8},1^{2}$ | $338$ | $3$ | $16$ | $( 1,12, 7)( 2, 8,10)( 3, 4,13)( 5, 9, 6)(14,17,26)(15,20,22)(16,23,18)(21,25,24)$ |
4A | $4^{6},1^{2}$ | $338$ | $4$ | $18$ | $( 1,13, 8, 9)( 2, 5, 7, 4)( 3,10, 6,12)(14,18,24,20)(15,26,23,25)(16,21,22,17)$ |
6A | $6^{4},1^{2}$ | $338$ | $6$ | $20$ | $( 1, 2,12, 8, 7,10)( 3, 9, 4, 6,13, 5)(14,25,17,24,26,21)(15,16,20,23,22,18)$ |
12A1 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 1, 6, 2,13,12, 5, 8, 3, 7, 9,10, 4)(14,22,25,18,17,15,24,16,26,20,21,23)$ |
12A5 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 1, 5,10,13, 7, 6, 8, 4,12, 9, 2, 3)(14,15,21,18,26,22,24,23,17,20,25,16)$ |
13A1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13A2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
13A3 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13A4 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13A5 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13A6 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13B1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13B2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13B3 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13B4 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13B5 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13B6 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13C | $13,1^{13}$ | $24$ | $13$ | $12$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)$ |
26A1 | $26$ | $156$ | $26$ | $25$ | $( 1,25, 3,26, 5,14, 7,15, 9,16,11,17,13,18, 2,19, 4,20, 6,21, 8,22,10,23,12,24)$ |
26A3 | $26$ | $156$ | $26$ | $25$ | $( 1,26, 7,16,13,19, 6,22,12,25, 5,15,11,18, 4,21,10,24, 3,14, 9,17, 2,20, 8,23)$ |
26A5 | $26$ | $156$ | $26$ | $25$ | $( 1,14,11,19, 8,24, 5,16, 2,21,12,26, 9,18, 6,23, 3,15,13,20,10,25, 7,17, 4,22)$ |
26A7 | $26$ | $156$ | $26$ | $25$ | $( 1,15, 2,22, 3,16, 4,23, 5,17, 6,24, 7,18, 8,25, 9,19,10,26,11,20,12,14,13,21)$ |
26A9 | $26$ | $156$ | $26$ | $25$ | $( 1,16, 6,25,11,21, 3,17, 8,26,13,22, 5,18,10,14, 2,23, 7,19,12,15, 4,24, 9,20)$ |
26A11 | $26$ | $156$ | $26$ | $25$ | $( 1,17,10,15, 6,26, 2,24,11,22, 7,20, 3,18,12,16, 8,14, 4,25,13,23, 9,21, 5,19)$ |
26B1 | $26$ | $156$ | $26$ | $25$ | $( 1,16,13,15,12,14,11,26,10,25, 9,24, 8,23, 7,22, 6,21, 5,20, 4,19, 3,18, 2,17)$ |
26B3 | $26$ | $156$ | $26$ | $25$ | $( 1,15,11,25, 8,22, 5,19, 2,16,12,26, 9,23, 6,20, 3,17,13,14,10,24, 7,21, 4,18)$ |
26B5 | $26$ | $156$ | $26$ | $25$ | $( 1,14, 9,22, 4,17,12,25, 7,20, 2,15,10,23, 5,18,13,26, 8,21, 3,16,11,24, 6,19)$ |
26B7 | $26$ | $156$ | $26$ | $25$ | $( 1,26, 7,19,13,25, 6,18,12,24, 5,17,11,23, 4,16,10,22, 3,15, 9,21, 2,14, 8,20)$ |
26B9 | $26$ | $156$ | $26$ | $25$ | $( 1,25, 5,16, 9,20,13,24, 4,15, 8,19,12,23, 3,14, 7,18,11,22, 2,26, 6,17,10,21)$ |
26B11 | $26$ | $156$ | $26$ | $25$ | $( 1,24, 3,26, 5,15, 7,17, 9,19,11,21,13,23, 2,25, 4,14, 6,16, 8,18,10,20,12,22)$ |
Malle's constant $a(G)$: $1/12$
Character table
34 x 34 character table
Regular extensions
Data not computed