Group action invariants
| Degree $n$ : | $26$ | |
| Transitive number $t$ : | $34$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,26,8,17,10,20,5,19,11,15,9,25)(2,21,12,23,13,18,4,24,7,22,6,14)(3,16), (1,6,9,3,2,4,13,8,5,11,12,10)(14,20,19,17,26,18,15,22,23,25,16,24) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 8: $Q_8$ 12: $C_6\times C_2$ 24: 24T4 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T34 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 13, 13 $ | $24$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,21,15,22,16,23,17,24,18,25,19,26, 20)$ |
| $ 13, 13 $ | $24$ | $13$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $13$ | $(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
| $ 13, 13 $ | $24$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,23,19,15,24,20,16,25,21,17,26,22, 18)$ |
| $ 13, 13 $ | $24$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $24$ | $13$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,19,24,16,21,26,18,23,15,20,25,17, 22)$ |
| $ 13, 13 $ | $24$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,21,15,22,16,23,17,24,18,25,19,26, 20)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $169$ | $3$ | $( 2, 4,10)( 3, 7, 6)( 5,13,11)( 8, 9,12)(15,17,23)(16,20,19)(18,26,24) (21,22,25)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $169$ | $3$ | $( 2,10, 4)( 3, 6, 7)( 5,11,13)( 8,12, 9)(15,23,17)(16,19,20)(18,24,26) (21,25,22)$ |
| $ 6, 6, 6, 6, 1, 1 $ | $169$ | $6$ | $( 2, 5, 4,13,10,11)( 3, 9, 7,12, 6, 8)(15,18,17,26,23,24)(16,22,20,25,19,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $169$ | $2$ | $( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(15,26)(16,25)(17,24)(18,23)(19,22) (20,21)$ |
| $ 6, 6, 6, 6, 1, 1 $ | $169$ | $6$ | $( 2,11,10,13, 4, 5)( 3, 8, 6,12, 7, 9)(15,24,23,26,17,18)(16,21,19,25,20,22)$ |
| $ 12, 12, 2 $ | $338$ | $12$ | $( 1,26, 8,17,10,20, 5,19,11,15, 9,25)( 2,21,12,23,13,18, 4,24, 7,22, 6,14) ( 3,16)$ |
| $ 12, 12, 2 $ | $338$ | $12$ | $( 1,24, 6,14, 4,18,10,19, 5,16, 7,25)( 2,22, 3,20,13,26, 9,21, 8,23,11,17) (12,15)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $338$ | $4$ | $( 1,18, 2,25)( 3,19,13,24)( 4,26,12,17)( 5,20,11,23)( 6,14,10,16)( 7,21, 9,22) ( 8,15)$ |
| $ 12, 12, 1, 1 $ | $338$ | $12$ | $( 2,12, 5, 6, 4, 8,13, 3,10, 9,11, 7)(15,16,18,22,17,20,26,25,23,19,24,21)$ |
| $ 12, 12, 1, 1 $ | $338$ | $12$ | $( 2, 8,11, 6,10,12,13, 7, 4, 9, 5, 3)(15,20,24,22,23,16,26,21,17,19,18,25)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1 $ | $338$ | $4$ | $( 2, 9,13, 6)( 3, 4,12,11)( 5, 7,10, 8)(15,19,26,22)(16,24,25,17)(18,21,23,20)$ |
| $ 12, 12, 2 $ | $338$ | $12$ | $( 1,26)( 2,23,11,22,10,25,13,16, 4,17, 5,14)( 3,20, 8,18, 6,24,12,19, 7,21, 9, 15)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $338$ | $4$ | $( 1,24, 8,26)( 2,15, 7,22)( 3,19, 6,18)( 4,23, 5,14)( 9,17,13,20)(10,21,12,16) (11,25)$ |
| $ 12, 12, 2 $ | $338$ | $12$ | $( 1,18, 7,25, 5,14,10,22, 4,15, 6,26)( 2,17,11,21, 8,24, 9,23,13,19, 3,16) (12,20)$ |
Group invariants
| Order: | $4056=2^{3} \cdot 3 \cdot 13^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |