Label 26T13
Degree $26$
Order $676$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $26$
Transitive number $t$:  $13$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,17,9,21,4,25,12,16,7,20,2,24,10,15,5,19,13,23,8,14,3,18,11,22,6,26), (1,24,3,23,5,22,7,21,9,20,11,19,13,18,2,17,4,16,6,15,8,14,10,26,12,25)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$26$:  $D_{13}$ x 2
$52$:  $D_{26}$ x 2

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 13: None

Low degree siblings

26T13 x 5

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $676=2^{2} \cdot 13^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  [676, 13]
Character table: not available.