Group action invariants
| Degree $n$ : | $26$ | |
| Transitive number $t$ : | $12$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,2,23)(3,17,13,22)(4,24,12,15)(5,18,11,21)(6,25,10,14)(7,19,9,20)(8,26), (1,16,8,26)(2,23,7,19)(3,17,6,25)(4,24,5,18)(9,20,13,22)(10,14,12,15)(11,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 52: $C_{13}:C_4$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T12 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $13$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $13$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)$ |
| $ 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25, 26)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,16,18,20,22,24,26,15,17,19,21,23, 25)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,18,22,26,17,21,25,16,20,24,15,19, 23)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,22,17,25,20,15,23,18,26,21,16,24, 19)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,22,17,25,20,15,23,18,26,21,16,24, 19)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,22,17,25,20,15,23,18,26,21,16,24, 19)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,22,17,25,20,15,23,18,26,21,16,24, 19)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,22,17,25,20,15,23,18,26,21,16,24, 19)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,17,20,23,26,16,19,22,25,15,18,21, 24)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,17,20,23,26,16,19,22,25,15,18,21, 24)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,17,20,23,26,16,19,22,25,15,18,21, 24)$ |
| $ 13, 13 $ | $4$ | $13$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,20,26,19,25,18,24,17,23,16,22,15, 21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $169$ | $2$ | $( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(15,26)(16,25)(17,24)(18,23)(19,22) (20,21)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $169$ | $4$ | $( 1,16, 2,23)( 3,17,13,22)( 4,24,12,15)( 5,18,11,21)( 6,25,10,14)( 7,19, 9,20) ( 8,26)$ |
| $ 4, 4, 4, 4, 4, 4, 2 $ | $169$ | $4$ | $( 1,25, 5,23)( 2,18, 4,17)( 3,24)( 6,16,13,19)( 7,22,12,26)( 8,15,11,20) ( 9,21,10,14)$ |
Group invariants
| Order: | $676=2^{2} \cdot 13^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [676, 11] |
| Character table: Data not available. |