Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $D_{25}.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,7,23)(2,14,6,21)(3,11,10,24)(4,13,9,22)(5,15,8,25)(16,20,18,19), (1,14)(2,13)(3,12)(4,11)(5,15)(6,8)(9,10)(16,23)(17,22)(18,21)(19,25)(20,24) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $F_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 3, 5, 4)( 6,14,22,16)( 7,11,21,19)( 8,13,25,17)( 9,15,24,20)(10,12,23,18)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 4, 5, 3)( 6,16,22,14)( 7,19,21,11)( 8,17,25,13)( 9,20,24,15)(10,18,23,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,22)( 7,21)( 8,25)( 9,24)(10,23)(11,19)(12,18)(13,17)(14,16) (15,20)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 25 $ | $4$ | $25$ | $( 1, 6,12,20,24, 3, 8,14,17,21, 5,10,11,19,23, 2, 7,13,16,25, 4, 9,15,18,22)$ |
| $ 25 $ | $4$ | $25$ | $( 1, 7,14,18,23, 3, 9,11,20,25, 5, 6,13,17,22, 2, 8,15,19,24, 4,10,12,16,21)$ |
| $ 25 $ | $4$ | $25$ | $( 1, 8,11,16,22, 3,10,13,18,24, 5, 7,15,20,21, 2, 9,12,17,23, 4, 6,14,19,25)$ |
| $ 25 $ | $4$ | $25$ | $( 1, 9,13,19,21, 3, 6,15,16,23, 5, 8,12,18,25, 2,10,14,20,22, 4, 7,11,17,24)$ |
| $ 25 $ | $4$ | $25$ | $( 1,10,15,17,25, 3, 7,12,19,22, 5, 9,14,16,24, 2, 6,11,18,21, 4, 8,13,20,23)$ |
Group invariants
| Order: | $100=2^{2} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [100, 3] |
| Character table: |
2 2 2 2 2 . . . . . .
5 2 . . . 2 2 2 2 2 2
1a 4a 4b 2a 5a 25a 25b 25c 25d 25e
2P 1a 2a 2a 1a 5a 25e 25a 25b 25c 25d
3P 1a 4b 4a 2a 5a 25d 25e 25a 25b 25c
5P 1a 4a 4b 2a 1a 5a 5a 5a 5a 5a
7P 1a 4b 4a 2a 5a 25a 25b 25c 25d 25e
11P 1a 4b 4a 2a 5a 25e 25a 25b 25c 25d
13P 1a 4a 4b 2a 5a 25b 25c 25d 25e 25a
17P 1a 4a 4b 2a 5a 25c 25d 25e 25a 25b
19P 1a 4b 4a 2a 5a 25c 25d 25e 25a 25b
23P 1a 4b 4a 2a 5a 25e 25a 25b 25c 25d
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 1 1 1
X.3 1 A -A -1 1 1 1 1 1 1
X.4 1 -A A -1 1 1 1 1 1 1
X.5 4 . . . 4 -1 -1 -1 -1 -1
X.6 4 . . . -1 B D C F E
X.7 4 . . . -1 C F E B D
X.8 4 . . . -1 D C F E B
X.9 4 . . . -1 E B D C F
X.10 4 . . . -1 F E B D C
A = -E(4)
= -Sqrt(-1) = -i
B = -E(25)^4-E(25)^6+E(25)^7-E(25)^9-E(25)^11-E(25)^14-E(25)^16+E(25)^18-E(25)^19-E(25)^21
C = E(25)^6+E(25)^8+E(25)^17+E(25)^19
D = E(25)^9+E(25)^12+E(25)^13+E(25)^16
E = -E(25)^3-E(25)^7-E(25)^8+E(25)^11-E(25)^12-E(25)^13+E(25)^14-E(25)^17-E(25)^18-E(25)^22
F = E(25)^3+E(25)^4+E(25)^21+E(25)^22
|