Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $C_5^2:C_3$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,6,25)(3,11,19)(4,16,13)(5,21,7)(8,10,20)(9,15,14)(12,24,22)(17,18,23), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
15T9 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $25$ | $3$ | $( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22) (17,18,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $25$ | $3$ | $( 2,25, 6)( 3,19,11)( 4,13,16)( 5, 7,21)( 8,20,10)( 9,14,15)(12,22,24) (17,23,18)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19) (21,23,25,22,24)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18) (21,24,22,25,23)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17) (21,25,24,23,22)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 9,12,20,23)( 2,10,13,16,24)( 3, 6,14,17,25)( 4, 7,15,18,21) ( 5, 8,11,19,22)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1,12,23, 9,20)( 2,13,24,10,16)( 3,14,25, 6,17)( 4,15,21, 7,18) ( 5,11,22, 8,19)$ |
| $ 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1,17, 8,24,15)( 2,18, 9,25,11)( 3,19,10,21,12)( 4,20, 6,22,13) ( 5,16, 7,23,14)$ |
Group invariants
| Order: | $75=3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [75, 2] |
| Character table: |
3 1 1 1 . . . . . . . .
5 2 . . 2 2 2 2 2 2 2 2
1a 3a 3b 5a 5b 5c 5d 5e 5f 5g 5h
2P 1a 3b 3a 5b 5d 5a 5c 5f 5g 5h 5e
3P 1a 1a 1a 5c 5a 5d 5b 5h 5e 5f 5g
5P 1a 3b 3a 1a 1a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A /A 1 1 1 1 1 1 1 1
X.3 1 /A A 1 1 1 1 1 1 1 1
X.4 3 . . B /C C /B D *D D *D
X.5 3 . . C B /B /C *D D *D D
X.6 3 . . /C /B B C *D D *D D
X.7 3 . . /B C /C B D *D D *D
X.8 3 . . D *D *D D C B /C /B
X.9 3 . . D *D *D D /C /B C B
X.10 3 . . *D D D *D /B C B /C
X.11 3 . . *D D D *D B /C /B C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(5)+E(5)^3
C = 2*E(5)^3+E(5)^4
D = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|