Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $46$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5)(6,7,8,9,10)(11,22,18,14,25,16,12,23,19,15,21,17,13,24,20), (1,16,6,11,21)(2,20,7,15,22,5,17,10,12,25)(3,19,8,14,23,4,18,9,13,24) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 10: $D_{5}$ 60: $A_5$ 120: $A_5\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Low degree siblings
30T128Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19) (21,23,25,22,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(11,16)(12,17)(13,18)(14,19)(15,20)$ |
| $ 10, 10, 5 $ | $30$ | $10$ | $( 1, 7, 3, 9, 5, 6, 2, 8, 4,10)(11,17,13,19,15,16,12,18,14,20)(21,22,23,24,25)$ |
| $ 10, 10, 5 $ | $30$ | $10$ | $( 1, 8, 5, 7, 4, 6, 3,10, 2, 9)(11,18,15,17,14,16,13,20,12,19)(21,23,25,22,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $75$ | $2$ | $( 1, 6)( 2,10)( 3, 9)( 4, 8)( 5, 7)(11,16)(12,20)(13,19)(14,18)(15,17)(22,25) (23,24)$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 15, 5, 5 $ | $40$ | $15$ | $( 1, 7,13, 4,10,11, 2, 8,14, 5, 6,12, 3, 9,15)(16,17,18,19,20)(21,22,23,24,25)$ |
| $ 15, 5, 5 $ | $40$ | $15$ | $( 1, 8,15, 2, 9,11, 3,10,12, 4, 6,13, 5, 7,14)(16,18,20,17,19)(21,23,25,22,24)$ |
| $ 6, 6, 3, 2, 2, 2, 2, 1, 1 $ | $100$ | $6$ | $( 1, 6,11)( 2,10,12, 5, 7,15)( 3, 9,13, 4, 8,14)(17,20)(18,19)(22,25)(23,24)$ |
| $ 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 8,13,18,23)( 4, 9,14,19,24) ( 5,10,15,20,25)$ |
| $ 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 7,13,19,25)( 2, 8,14,20,21)( 3, 9,15,16,22)( 4,10,11,17,23) ( 5, 6,12,18,24)$ |
| $ 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
| $ 10, 10, 5 $ | $60$ | $10$ | $( 1, 6,11,16,21)( 2,10,12,20,22, 5, 7,15,17,25)( 3, 9,13,19,23, 4, 8,14,18,24)$ |
| $ 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 6,11,21,16)( 2, 7,12,22,17)( 3, 8,13,23,18)( 4, 9,14,24,19) ( 5,10,15,25,20)$ |
| $ 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 7,13,24,20)( 2, 8,14,25,16)( 3, 9,15,21,17)( 4,10,11,22,18) ( 5, 6,12,23,19)$ |
| $ 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 8,15,22,19)( 2, 9,11,23,20)( 3,10,12,24,16)( 4, 6,13,25,17) ( 5, 7,14,21,18)$ |
| $ 10, 10, 5 $ | $60$ | $10$ | $( 1, 6,11,21,16)( 2,10,12,25,17, 5, 7,15,22,20)( 3, 9,13,24,18, 4, 8,14,23,19)$ |
Group invariants
| Order: | $600=2^{3} \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [600, 146] |
| Character table: |
2 3 2 2 3 3 2 2 3 1 . . 1 1 . . 1 1 . .
3 1 1 1 1 . . . . 1 1 1 1 . . . . . . .
5 2 2 2 1 1 1 1 . 1 1 1 . 2 2 2 1 2 2 2
1a 5a 5b 2a 2b 10a 10b 2c 3a 15a 15b 6a 5c 5d 5e 10c 5f 5g 5h
2P 1a 5b 5a 1a 1a 5b 5a 1a 3a 15b 15a 3a 5f 5h 5g 5f 5c 5e 5d
3P 1a 5b 5a 2a 2b 10b 10a 2c 1a 5b 5a 2a 5f 5h 5g 10d 5c 5e 5d
5P 1a 1a 1a 2a 2b 2b 2b 2c 3a 3a 3a 6a 1a 1a 1a 2a 1a 1a 1a
7P 1a 5b 5a 2a 2b 10b 10a 2c 3a 15b 15a 6a 5f 5h 5g 10d 5c 5e 5d
11P 1a 5a 5b 2a 2b 10a 10b 2c 3a 15a 15b 6a 5c 5d 5e 10c 5f 5g 5h
13P 1a 5b 5a 2a 2b 10b 10a 2c 3a 15b 15a 6a 5f 5h 5g 10d 5c 5e 5d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1
X.3 2 A *A . 2 A *A . 2 A *A . 2 A *A . 2 A *A
X.4 2 *A A . 2 *A A . 2 *A A . 2 *A A . 2 *A A
X.5 3 3 3 -3 -1 -1 -1 1 . . . . -A -A -A A -*A -*A -*A
X.6 3 3 3 -3 -1 -1 -1 1 . . . . -*A -*A -*A *A -A -A -A
X.7 3 3 3 3 -1 -1 -1 -1 . . . . -A -A -A -A -*A -*A -*A
X.8 3 3 3 3 -1 -1 -1 -1 . . . . -*A -*A -*A -*A -A -A -A
X.9 4 4 4 -4 . . . . 1 1 1 -1 -1 -1 -1 1 -1 -1 -1
X.10 4 4 4 4 . . . . 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.11 5 5 5 -5 1 1 1 -1 -1 -1 -1 1 . . . . . . .
X.12 5 5 5 5 1 1 1 1 -1 -1 -1 -1 . . . . . . .
X.13 6 B *B . -2 -*A -A . . . . . E 1 *F . *E F 1
X.14 6 *B B . -2 -A -*A . . . . . *E 1 F . E *F 1
X.15 6 B *B . -2 -*A -A . . . . . *E F 1 . E 1 *F
X.16 6 *B B . -2 -A -*A . . . . . E *F 1 . *E 1 F
X.17 8 C *C . . . . . 2 A *A . -2 -A -*A . -2 -A -*A
X.18 8 *C C . . . . . 2 *A A . -2 -*A -A . -2 -*A -A
X.19 10 D *D . 2 A *A . -2 -A -*A . . . . . . . .
X.20 10 *D D . 2 *A A . -2 -*A -A . . . . . . . .
2 1
3 .
5 1
10d
2P 5c
3P 10c
5P 2a
7P 10c
11P 10d
13P 10c
X.1 1
X.2 -1
X.3 .
X.4 .
X.5 *A
X.6 A
X.7 -*A
X.8 -A
X.9 1
X.10 -1
X.11 .
X.12 .
X.13 .
X.14 .
X.15 .
X.16 .
X.17 .
X.18 .
X.19 .
X.20 .
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = 3*E(5)^2+3*E(5)^3
= (-3-3*Sqrt(5))/2 = -3-3b5
C = 4*E(5)+4*E(5)^4
= -2+2*Sqrt(5) = 4b5
D = 5*E(5)+5*E(5)^4
= (-5+5*Sqrt(5))/2 = 5b5
E = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
F = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
= (-3-Sqrt(5))/2 = -2-b5
|