Group action invariants
Degree $n$: | $25$ | |
Transitive number $t$: | $45$ | |
Parity: | $-1$ | |
Primitive: | yes | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $1$ | |
Generators: | (1,8,21,12,6,4,11,25)(2,19,24,20,10,18,13,17)(3,5,22,23,9,7,15,14), (1,14,20,24,12,4,23,19)(2,7,18,8,11,6,25,10)(3,5,16,17,15,13,22,21) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $8$: $C_8$ $12$: $C_3 : C_4$ $24$: 24T8 Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
30T143Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
$ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 4, 5, 3)( 6,16,21,11)( 7,19,25,13)( 8,17,24,15)( 9,20,23,12)(10,18,22,14)$ |
$ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 3, 5, 4)( 6,11,21,16)( 7,13,25,19)( 8,15,24,17)( 9,12,23,20)(10,14,22,18)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $50$ | $3$ | $( 2,25, 6)( 3,19,11)( 4,13,16)( 5, 7,21)( 8,20,10)( 9,14,15)(12,22,24) (17,23,18)$ |
$ 6, 6, 6, 6, 1 $ | $50$ | $6$ | $( 2, 7, 6, 5,25,21)( 3,13,11, 4,19,16)( 8,12,10,24,20,22)( 9,18,15,23,14,17)$ |
$ 12, 12, 1 $ | $50$ | $12$ | $( 2,13,21, 3,25,16, 5,19, 6, 4, 7,11)( 8,23,22,15,20,18,24, 9,10,17,12,14)$ |
$ 12, 12, 1 $ | $50$ | $12$ | $( 2,19,21, 4,25,11, 5,13, 6, 3, 7,16)( 8, 9,22,17,20,14,24,23,10,15,12,18)$ |
$ 8, 8, 8, 1 $ | $75$ | $8$ | $( 2,12, 4, 9, 5,20, 3,23)( 6,22,16,14,21,10,11,18)( 7, 8,19,17,25,24,13,15)$ |
$ 8, 8, 8, 1 $ | $75$ | $8$ | $( 2,20, 4,23, 5,12, 3, 9)( 6,10,16,18,21,22,11,14)( 7,24,19,15,25, 8,13,17)$ |
$ 8, 8, 8, 1 $ | $75$ | $8$ | $( 2, 9, 3,12, 5,23, 4,20)( 6,14,11,22,21,18,16,10)( 7,17,13, 8,25,15,19,24)$ |
$ 8, 8, 8, 1 $ | $75$ | $8$ | $( 2,23, 3,20, 5, 9, 4,12)( 6,18,11,10,21,14,16,22)( 7,15,13,24,25,17,19, 8)$ |
Group invariants
Order: | $600=2^{3} \cdot 3 \cdot 5^{2}$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [600, 148] |
Character table: |
2 3 . 3 3 3 2 2 2 2 3 3 3 3 3 1 . 1 1 1 1 1 1 1 . . . . 5 2 2 . . . . . . . . . . . 1a 5a 2a 4a 4b 3a 6a 12a 12b 8a 8b 8c 8d 2P 1a 5a 1a 2a 2a 3a 3a 6a 6a 4a 4a 4b 4b 3P 1a 5a 2a 4b 4a 1a 2a 4b 4a 8c 8d 8a 8b 5P 1a 1a 2a 4a 4b 3a 6a 12a 12b 8b 8a 8d 8c 7P 1a 5a 2a 4b 4a 3a 6a 12b 12a 8d 8c 8b 8a 11P 1a 5a 2a 4b 4a 3a 6a 12b 12a 8c 8d 8a 8b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 X.3 1 1 -1 A -A 1 -1 A -A C -C -/C /C X.4 1 1 -1 A -A 1 -1 A -A -C C /C -/C X.5 1 1 -1 -A A 1 -1 -A A -/C /C C -C X.6 1 1 -1 -A A 1 -1 -A A /C -/C -C C X.7 1 1 1 -1 -1 1 1 -1 -1 A A -A -A X.8 1 1 1 -1 -1 1 1 -1 -1 -A -A A A X.9 2 2 2 -2 -2 -1 -1 1 1 . . . . X.10 2 2 2 2 2 -1 -1 -1 -1 . . . . X.11 2 2 -2 B -B -1 1 -A A . . . . X.12 2 2 -2 -B B -1 1 A -A . . . . X.13 24 -1 . . . . . . . . . . . A = -E(4) = -Sqrt(-1) = -i B = -2*E(4) = -2*Sqrt(-1) = -2i C = -E(8)^3 |