Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $41$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,25,10,21,2,17)(3,14,22,24,13,5)(4,6,18,23,16,9)(7,15,19,20,12,8), (1,25,13,19)(2,11,12,3)(4,18,15,21)(5,9,14,10)(6,16,8,23)(17,24,22,20) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ 24: $\SL(2,3)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
30T126Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1,24,17,15, 8)( 2,25,18,11, 9)( 3,21,19,12,10)( 4,22,20,13, 6) ( 5,23,16,14, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $150$ | $4$ | $( 2, 4, 5, 3)( 6,14,21,18)( 7,12,25,20)( 8,15,24,17)( 9,13,23,19)(10,11,22,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $100$ | $3$ | $( 2,22, 9)( 3,18,12)( 4,14,20)( 5,10,23)( 6,19, 8)( 7,15,11)(13,24,21) (16,25,17)$ |
| $ 6, 6, 6, 6, 1 $ | $100$ | $6$ | $( 2,10, 9, 5,22,23)( 3,14,12, 4,18,20)( 6,13, 8,21,19,24)( 7,17,11,25,15,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $100$ | $3$ | $( 2, 9,22)( 3,12,18)( 4,20,14)( 5,23,10)( 6, 8,19)( 7,11,15)(13,21,24) (16,17,25)$ |
| $ 6, 6, 6, 6, 1 $ | $100$ | $6$ | $( 2,23,22, 5, 9,10)( 3,20,18, 4,12,14)( 6,24,19,21, 8,13)( 7,16,15,25,11,17)$ |
Group invariants
| Order: | $600=2^{3} \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [600, 150] |
| Character table: |
2 3 . 3 2 1 1 1 1
3 1 . 1 . 1 1 1 1
5 2 2 . . . . . .
1a 5a 2a 4a 3a 6a 3b 6b
2P 1a 5a 1a 2a 3b 3b 3a 3a
3P 1a 5a 2a 4a 1a 2a 1a 2a
5P 1a 1a 2a 4a 3b 6b 3a 6a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 A A /A /A
X.3 1 1 1 1 /A /A A A
X.4 2 2 -2 . -1 1 -1 1
X.5 2 2 -2 . -A A -/A /A
X.6 2 2 -2 . -/A /A -A A
X.7 3 3 3 -1 . . . .
X.8 24 -1 . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|