Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $39$ | |
| Group : | $C_5^2:C_{10}.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,12,21)(2,18,11,24)(3,20,15,22)(4,17,14,25)(5,19,13,23)(6,7,9,8), (1,15,21,8,20)(2,11,22,9,16)(3,12,23,10,17)(4,13,24,6,18)(5,14,25,7,19) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: $F_5$, 20T2 100: 20T26 Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $F_5$
Low degree siblings
25T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 1, 1, 1, 1, 1 $ | $10$ | $5$ | $( 6, 7, 8, 9,10)(11,13,15,12,14)(16,19,17,20,18)(21,25,24,23,22)$ |
| $ 5, 5, 5, 5, 1, 1, 1, 1, 1 $ | $10$ | $5$ | $( 6, 8,10, 7, 9)(11,15,14,13,12)(16,17,18,19,20)(21,24,22,25,23)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $125$ | $4$ | $( 2, 3, 5, 4)( 6,16,21,11)( 7,18,25,14)( 8,20,24,12)( 9,17,23,15)(10,19,22,13)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $125$ | $4$ | $( 2, 4, 5, 3)( 6,11,21,16)( 7,14,25,18)( 8,12,24,20)( 9,15,23,17)(10,13,22,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 10, 10, 2, 2, 1 $ | $50$ | $10$ | $( 2, 5)( 3, 4)( 6,22, 9,24, 7,21,10,23, 8,25)(11,18,12,17,13,16,14,20,15,19)$ |
| $ 10, 10, 2, 2, 1 $ | $50$ | $10$ | $( 2, 5)( 3, 4)( 6,23, 7,22, 8,21, 9,25,10,24)(11,20,13,18,15,16,12,19,14,17)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,11,19,23)( 2, 7,12,20,24)( 3, 8,13,16,25)( 4, 9,14,17,21) ( 5,10,15,18,22)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,12,17,24)( 2, 7,13,18,25)( 3, 8,14,19,21)( 4, 9,15,20,22) ( 5,10,11,16,23)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,13,20,25)( 2, 7,14,16,21)( 3, 8,15,17,22)( 4, 9,11,18,23) ( 5,10,12,19,24)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,14,18,21)( 2, 7,15,19,22)( 3, 8,11,20,23)( 4, 9,12,16,24) ( 5,10,13,17,25)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,15,16,22)( 2, 7,11,17,23)( 3, 8,12,18,24)( 4, 9,13,19,25) ( 5,10,14,20,21)$ |
Group invariants
| Order: | $500=2^{2} \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [500, 21] |
| Character table: |
2 2 1 1 2 2 2 1 1 . . . . . .
5 3 2 2 . . 1 1 1 3 2 2 2 2 2
1a 5a 5b 4a 4b 2a 10a 10b 5c 5d 5e 5f 5g 5h
2P 1a 5b 5a 2a 2a 1a 5b 5a 5c 5h 5f 5d 5g 5e
3P 1a 5b 5a 4b 4a 2a 10b 10a 5c 5f 5h 5e 5g 5d
5P 1a 1a 1a 4a 4b 2a 2a 2a 1a 1a 1a 1a 1a 1a
7P 1a 5b 5a 4b 4a 2a 10b 10a 5c 5h 5f 5d 5g 5e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 1 1 1 1 1 1 1 1 1
X.3 1 1 1 C -C -1 -1 -1 1 1 1 1 1 1
X.4 1 1 1 -C C -1 -1 -1 1 1 1 1 1 1
X.5 2 A *A . . -2 -A -*A 2 *A *A A 2 A
X.6 2 *A A . . -2 -*A -A 2 A A *A 2 *A
X.7 2 A *A . . 2 A *A 2 *A *A A 2 A
X.8 2 *A A . . 2 *A A 2 A A *A 2 *A
X.9 4 4 4 . . . . . 4 -1 -1 -1 -1 -1
X.10 4 B *B . . . . . 4 D /D E -1 /E
X.11 4 B *B . . . . . 4 /D D /E -1 E
X.12 4 *B B . . . . . 4 E /E /D -1 D
X.13 4 *B B . . . . . 4 /E E D -1 /D
X.14 20 . . . . . . . -5 . . . . .
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = 2*E(5)^2+2*E(5)^3
= -1-Sqrt(5) = -1-r5
C = -E(4)
= -Sqrt(-1) = -i
D = -E(5)-E(5)^2+E(5)^3
E = -E(5)-E(5)^3+E(5)^4
|