Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $36$ | |
| Group : | $C_5^2:C_{10}.C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,4,6)(2,7,3,9)(5,8)(11,15,12,13)(16,25,19,22)(17,24,18,23)(20,21), (1,23,2,21)(3,24,5,25)(4,22)(6,13)(7,14,10,12)(8,15,9,11)(16,18,19,17) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: $F_5$, 20T2 100: 20T26 Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $D_{5}$
Low degree siblings
25T39Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 1, 1, 1, 1, 1 $ | $20$ | $5$ | $( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 1 $ | $125$ | $4$ | $( 2, 3, 5, 4)( 6,21)( 7,24,10,23)( 8,22, 9,25)(11,16)(12,19,15,18) (13,17,14,20)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 1 $ | $125$ | $4$ | $( 2, 4, 5, 3)( 6,21)( 7,23,10,24)( 8,25, 9,22)(11,16)(12,18,15,19) (13,20,14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 2, 3, 4, 5)( 6,10, 9, 8, 7)(11,14,12,15,13)(16,18,20,17,19) (21,22,23,24,25)$ |
| $ 10, 10, 5 $ | $50$ | $10$ | $( 1, 6,16,11,21)( 2, 7,18,13,22, 5,10,19,14,25)( 3, 8,20,15,23, 4, 9,17,12,24)$ |
| $ 5, 5, 5, 5, 5 $ | $10$ | $5$ | $( 1, 6,16,11,21)( 2,10,18,14,22)( 3, 9,20,12,23)( 4, 8,17,15,24) ( 5, 7,19,13,25)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,17,13,24)( 2,10,19,11,25)( 3, 9,16,14,21)( 4, 8,18,12,22) ( 5, 7,20,15,23)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1, 6,18,15,22)( 2,10,20,13,23)( 3, 9,17,11,24)( 4, 8,19,14,25) ( 5, 7,16,12,21)$ |
| $ 10, 10, 5 $ | $50$ | $10$ | $( 1,11, 6,21,16)( 2,13,10,25,18, 5,14, 7,22,19)( 3,15, 9,24,20, 4,12, 8,23,17)$ |
| $ 5, 5, 5, 5, 5 $ | $10$ | $5$ | $( 1,11, 6,21,16)( 2,14,10,22,18)( 3,12, 9,23,20)( 4,15, 8,24,17) ( 5,13, 7,25,19)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1,11, 8,25,17)( 2,14, 7,21,19)( 3,12, 6,22,16)( 4,15,10,23,18) ( 5,13, 9,24,20)$ |
| $ 5, 5, 5, 5, 5 $ | $20$ | $5$ | $( 1,11,10,24,18)( 2,14, 9,25,20)( 3,12, 8,21,17)( 4,15, 7,22,19) ( 5,13, 6,23,16)$ |
Group invariants
| Order: | $500=2^{2} \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [500, 21] |
| Character table: |
2 2 . 2 2 2 . 1 1 . . 1 1 . .
5 3 2 . . 1 3 1 2 2 2 1 2 2 2
1a 5a 4a 4b 2a 5b 10a 5c 5d 5e 10b 5f 5g 5h
2P 1a 5a 2a 2a 1a 5b 5f 5f 5h 5g 5c 5c 5d 5e
3P 1a 5a 4b 4a 2a 5b 10b 5f 5g 5h 10a 5c 5e 5d
5P 1a 1a 4a 4b 2a 1a 2a 1a 1a 1a 2a 1a 1a 1a
7P 1a 5a 4b 4a 2a 5b 10b 5f 5h 5g 10a 5c 5d 5e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1 1 1 1 1 1
X.3 1 1 A -A -1 1 -1 1 1 1 -1 1 1 1
X.4 1 1 -A A -1 1 -1 1 1 1 -1 1 1 1
X.5 2 2 . . -2 2 B -B -B -B *B -*B -*B -*B
X.6 2 2 . . -2 2 *B -*B -*B -*B B -B -B -B
X.7 2 2 . . 2 2 -*B -*B -*B -*B -B -B -B -B
X.8 2 2 . . 2 2 -B -B -B -B -*B -*B -*B -*B
X.9 4 -1 . . . 4 . 4 -1 -1 . 4 -1 -1
X.10 4 -1 . . . 4 . C D /D . *C /E E
X.11 4 -1 . . . 4 . C /D D . *C E /E
X.12 4 -1 . . . 4 . *C E /E . C D /D
X.13 4 -1 . . . 4 . *C /E E . C /D D
X.14 20 . . . . -5 . . . . . . . .
A = -E(4)
= -Sqrt(-1) = -i
B = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
C = 2*E(5)^2+2*E(5)^3
= -1-Sqrt(5) = -1-r5
D = -E(5)-E(5)^3+E(5)^4
E = -E(5)-E(5)^2+E(5)^3
|