Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $31$ | |
| Group : | $D_5^2.C_4$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,19,5,7,18,25,6,13,24)(2,17,20,10,8,23,21,11,14,4)(3,22,16,15,9), (1,21,18,8,22,2,10,20)(3,19,17,24,25,9,6,4)(5,12,16,15,23,11,7,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 16: $C_8:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
10T28, 20T104, 20T107, 20T109, 20T115, 40T397, 40T398, 40T399, 40T400Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 3, 5, 4)( 6,11,21,16)( 7,13,25,19)( 8,15,24,17)( 9,12,23,20)(10,14,22,18)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 4, 5, 3)( 6,16,21,11)( 7,19,25,13)( 8,17,24,15)( 9,20,23,12)(10,18,22,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 6)( 3,11)( 4,16)( 5,21)( 8,12)( 9,17)(10,22)(14,18)(15,23)(20,24)$ |
| $ 8, 8, 8, 1 $ | $50$ | $8$ | $( 2, 8, 4,17, 5,24, 3,15)( 6,20,16,23,21,12,11, 9)( 7,22,19,14,25,10,13,18)$ |
| $ 8, 8, 8, 1 $ | $50$ | $8$ | $( 2, 9, 4,20, 5,23, 3,12)( 6,15,16, 8,21,17,11,24)( 7,18,19,22,25,14,13,10)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $50$ | $4$ | $( 2,11, 5,16)( 3,21, 4, 6)( 7,13,25,19)( 8,23,24, 9)(10,18,22,14)(12,15,20,17)$ |
| $ 8, 8, 8, 1 $ | $50$ | $8$ | $( 2,12, 3,23, 5,20, 4, 9)( 6,24,11,17,21, 8,16,15)( 7,10,13,14,25,22,19,18)$ |
| $ 8, 8, 8, 1 $ | $50$ | $8$ | $( 2,15, 3,24, 5,17, 4, 8)( 6, 9,11,12,21,23,16,20)( 7,18,13,10,25,14,19,22)$ |
| $ 5, 5, 5, 5, 5 $ | $16$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 10, 10, 5 $ | $40$ | $10$ | $( 1, 2, 7, 8,13,14,19,20,25,21)( 3,12, 9,18,15,24,16, 5,22, 6)( 4,17,10,23,11)$ |
| $ 5, 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 7,13,19,25)( 2, 8,14,20,21)( 3, 9,15,16,22)( 4,10,11,17,23) ( 5, 6,12,18,24)$ |
Group invariants
| Order: | $400=2^{4} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [400, 206] |
| Character table: |
2 4 4 4 4 3 3 3 3 3 3 . 1 1
5 2 . . . 1 . . . . . 2 1 2
1a 4a 4b 2a 2b 8a 8b 4c 8c 8d 5a 10a 5b
2P 1a 2a 2a 1a 1a 4b 4b 2a 4a 4a 5a 5b 5b
3P 1a 4b 4a 2a 2b 8d 8c 4c 8b 8a 5a 10a 5b
5P 1a 4a 4b 2a 2b 8a 8b 4c 8c 8d 1a 2b 1a
7P 1a 4b 4a 2a 2b 8d 8c 4c 8b 8a 5a 10a 5b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 1
X.3 1 1 1 1 -1 1 -1 -1 -1 1 1 -1 1
X.4 1 1 1 1 1 -1 -1 1 -1 -1 1 1 1
X.5 1 -1 -1 1 -1 B B 1 -B -B 1 -1 1
X.6 1 -1 -1 1 -1 -B -B 1 B B 1 -1 1
X.7 1 -1 -1 1 1 B -B -1 B -B 1 1 1
X.8 1 -1 -1 1 1 -B B -1 -B B 1 1 1
X.9 2 A -A -2 . . . . . . 2 . 2
X.10 2 -A A -2 . . . . . . 2 . 2
X.11 8 . . . -4 . . . . . -2 1 3
X.12 8 . . . 4 . . . . . -2 -1 3
X.13 16 . . . . . . . . . 1 . -4
A = -2*E(4)
= -2*Sqrt(-1) = -2i
B = -E(4)
= -Sqrt(-1) = -i
|