Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $27$ | |
| Group : | $C_5^2:D_6$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,5,22,6,23)(2,12,24,21,11,4)(3,7,18,25,16,10)(8,13,19,20,15,9), (1,11)(2,17)(3,23)(5,10)(7,12)(8,18)(9,24)(14,19)(15,25)(16,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
15T18 x 2, 30T66 x 2, 30T72 x 2, 30T80 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 6,25)( 7,21)( 8,22)( 9,23)(10,24)(11,19)(12,20)(13,16)(14,17)(15,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3, 4)( 6, 7)( 8,10)(11,13)(14,15)(16,19)(17,18)(21,25)(22,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $50$ | $3$ | $( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22) (17,18,23)$ |
| $ 6, 6, 6, 6, 1 $ | $50$ | $6$ | $( 2, 7, 6, 5,25,21)( 3,13,11, 4,19,16)( 8,12,10,24,20,22)( 9,18,15,23,14,17)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 10, 10, 5 $ | $30$ | $10$ | $( 1, 2, 3, 4, 5)( 6,21, 8,23,10,25, 7,22, 9,24)(11,20,13,17,15,19,12,16,14,18)$ |
| $ 10, 10, 5 $ | $30$ | $10$ | $( 1, 2, 7, 8,13,14,19,20,25,21)( 3,12, 9,18,15,24,16, 5,22, 6)( 4,17,10,23,11)$ |
| $ 10, 10, 5 $ | $30$ | $10$ | $( 1, 2, 8, 9,15,11,17,18,24,25)( 3,14,10,16,12,23,19, 5,21, 7)( 4,20, 6,22,13)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19) (21,23,25,22,24)$ |
| $ 10, 10, 5 $ | $30$ | $10$ | $( 1, 3,15,12,24,21, 8,10,17,19)( 2, 9,11,18,25)( 4,16,13, 5,22,14, 6,23,20, 7)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 9,12,20,23)( 2,10,13,16,24)( 3, 6,14,17,25)( 4, 7,15,18,21) ( 5, 8,11,19,22)$ |
Group invariants
| Order: | $300=2^{2} \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [300, 25] |
| Character table: |
2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
3 1 . . 1 1 1 . . . . . . . .
5 2 1 1 . . . 2 1 1 1 2 1 2 2
1a 2a 2b 2c 3a 6a 5a 10a 10b 10c 5b 10d 5c 5d
2P 1a 1a 1a 1a 3a 3a 5b 5b 5a 5c 5a 5d 5d 5c
3P 1a 2a 2b 2c 1a 2c 5b 10b 10a 10d 5a 10c 5d 5c
5P 1a 2a 2b 2c 3a 6a 1a 2a 2a 2b 1a 2b 1a 1a
7P 1a 2a 2b 2c 3a 6a 5b 10b 10a 10d 5a 10c 5d 5c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1 1
X.4 1 1 -1 -1 1 -1 1 1 1 -1 1 -1 1 1
X.5 2 . . -2 -1 1 2 . . . 2 . 2 2
X.6 2 . . 2 -1 -1 2 . . . 2 . 2 2
X.7 6 -2 . . . . A C *C . *A . *B B
X.8 6 -2 . . . . *A *C C . A . B *B
X.9 6 . -2 . . . B . . *C *B C A *A
X.10 6 . -2 . . . *B . . C B *C *A A
X.11 6 . 2 . . . B . . -*C *B -C A *A
X.12 6 . 2 . . . *B . . -C B -*C *A A
X.13 6 2 . . . . A -C -*C . *A . *B B
X.14 6 2 . . . . *A -*C -C . A . B *B
A = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
= (-3-Sqrt(5))/2 = -2-b5
B = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
C = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|