Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $C_5^2:C_{12}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,9,22,21,11,10,7,2,14,15,25)(3,24,16,23,6,17,8,12,20,13,5,19), (1,2)(3,5)(6,22)(7,21)(8,25)(9,24)(10,23)(11,17)(12,16)(13,20)(14,19)(15,18) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $C_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
15T19 x 2, 30T78 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 3, 5, 4)( 6,11,21,16)( 7,13,25,19)( 8,15,24,17)( 9,12,23,20)(10,14,22,18)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $25$ | $4$ | $( 2, 4, 5, 3)( 6,16,21,11)( 7,19,25,13)( 8,17,24,15)( 9,20,23,12)(10,18,22,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $25$ | $3$ | $( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22) (17,18,23)$ |
| $ 6, 6, 6, 6, 1 $ | $25$ | $6$ | $( 2, 7, 6, 5,25,21)( 3,13,11, 4,19,16)( 8,12,10,24,20,22)( 9,18,15,23,14,17)$ |
| $ 12, 12, 1 $ | $25$ | $12$ | $( 2,11, 7, 4, 6,19, 5,16,25, 3,21,13)( 8,14,12,17,10, 9,24,18,20,15,22,23)$ |
| $ 12, 12, 1 $ | $25$ | $12$ | $( 2,13,21, 3,25,16, 5,19, 6, 4, 7,11)( 8,23,22,15,20,18,24, 9,10,17,12,14)$ |
| $ 12, 12, 1 $ | $25$ | $12$ | $( 2,16, 7, 3, 6,13, 5,11,25, 4,21,19)( 8,18,12,15,10,23,24,14,20,17,22, 9)$ |
| $ 12, 12, 1 $ | $25$ | $12$ | $( 2,19,21, 4,25,11, 5,13, 6, 3, 7,16)( 8, 9,22,17,20,14,24,23,10,15,12,18)$ |
| $ 6, 6, 6, 6, 1 $ | $25$ | $6$ | $( 2,21,25, 5, 6, 7)( 3,16,19, 4,11,13)( 8,22,20,24,10,12)( 9,17,14,23,15,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $25$ | $3$ | $( 2,25, 6)( 3,19,11)( 4,13,16)( 5, 7,21)( 8,20,10)( 9,14,15)(12,22,24) (17,23,18)$ |
| $ 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
Group invariants
| Order: | $300=2^{2} \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [300, 24] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2 . .
3 1 1 1 1 1 1 1 1 1 1 1 1 . .
5 2 . . . . . . . . . . . 2 2
1a 4a 4b 2a 3a 6a 12a 12b 12c 12d 6b 3b 5a 5b
2P 1a 2a 2a 1a 3b 3a 6a 6b 6a 6b 3b 3a 5a 5b
3P 1a 4b 4a 2a 1a 2a 4b 4a 4a 4b 2a 1a 5a 5b
5P 1a 4a 4b 2a 3b 6b 12d 12c 12b 12a 6a 3a 1a 1a
7P 1a 4b 4a 2a 3a 6a 12c 12d 12a 12b 6b 3b 5a 5b
11P 1a 4b 4a 2a 3b 6b 12b 12a 12d 12c 6a 3a 5a 5b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.3 1 -1 -1 1 B /B -B -/B -B -/B B /B 1 1
X.4 1 -1 -1 1 /B B -/B -B -/B -B /B B 1 1
X.5 1 1 1 1 B /B B /B B /B B /B 1 1
X.6 1 1 1 1 /B B /B B /B B /B B 1 1
X.7 1 A -A -1 1 -1 A -A -A A -1 1 1 1
X.8 1 -A A -1 1 -1 -A A A -A -1 1 1 1
X.9 1 A -A -1 B -/B C /C -C -/C -B /B 1 1
X.10 1 A -A -1 /B -B -/C -C /C C -/B B 1 1
X.11 1 -A A -1 B -/B -C -/C C /C -B /B 1 1
X.12 1 -A A -1 /B -B /C C -/C -C -/B B 1 1
X.13 12 . . . . . . . . . . . 2 -3
X.14 12 . . . . . . . . . . . -3 2
A = -E(4)
= -Sqrt(-1) = -i
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
C = -E(12)^11
|