Group action invariants
Degree $n$: | $25$ | |
Transitive number $t$: | $2$ | |
Group: | $C_5^2$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $1$ | |
$|\Aut(F/K)|$: | $25$ | |
Generators: | (1,10,14,18,22)(2,6,15,19,23)(3,7,11,20,24)(4,8,12,16,25)(5,9,13,17,21), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $5$: $C_5$ x 6 Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $C_5$ x 6
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19) (21,23,25,22,24)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18) (21,24,22,25,23)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17) (21,25,24,23,22)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 8,13,18,23)( 4, 9,14,19,24) ( 5,10,15,20,25)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 7,13,19,25)( 2, 8,14,20,21)( 3, 9,15,16,22)( 4,10,11,17,23) ( 5, 6,12,18,24)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 9,12,20,23)( 2,10,13,16,24)( 3, 6,14,17,25)( 4, 7,15,18,21) ( 5, 8,11,19,22)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,10,14,18,22)( 2, 6,15,19,23)( 3, 7,11,20,24)( 4, 8,12,16,25) ( 5, 9,13,17,21)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,11,21, 6,16)( 2,12,22, 7,17)( 3,13,23, 8,18)( 4,14,24, 9,19) ( 5,15,25,10,20)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,12,23, 9,20)( 2,13,24,10,16)( 3,14,25, 6,17)( 4,15,21, 7,18) ( 5,11,22, 8,19)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,13,25, 7,19)( 2,14,21, 8,20)( 3,15,22, 9,16)( 4,11,23,10,17) ( 5,12,24, 6,18)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,14,22,10,18)( 2,15,23, 6,19)( 3,11,24, 7,20)( 4,12,25, 8,16) ( 5,13,21, 9,17)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,15,24, 8,17)( 2,11,25, 9,18)( 3,12,21,10,19)( 4,13,22, 6,20) ( 5,14,23, 7,16)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,16, 6,21,11)( 2,17, 7,22,12)( 3,18, 8,23,13)( 4,19, 9,24,14) ( 5,20,10,25,15)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,17, 8,24,15)( 2,18, 9,25,11)( 3,19,10,21,12)( 4,20, 6,22,13) ( 5,16, 7,23,14)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,18,10,22,14)( 2,19, 6,23,15)( 3,20, 7,24,11)( 4,16, 8,25,12) ( 5,17, 9,21,13)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,19, 7,25,13)( 2,20, 8,21,14)( 3,16, 9,22,15)( 4,17,10,23,11) ( 5,18, 6,24,12)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,20, 9,23,12)( 2,16,10,24,13)( 3,17, 6,25,14)( 4,18, 7,21,15) ( 5,19, 8,22,11)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,21,16,11, 6)( 2,22,17,12, 7)( 3,23,18,13, 8)( 4,24,19,14, 9) ( 5,25,20,15,10)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,22,18,14,10)( 2,23,19,15, 6)( 3,24,20,11, 7)( 4,25,16,12, 8) ( 5,21,17,13, 9)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,23,20,12, 9)( 2,24,16,13,10)( 3,25,17,14, 6)( 4,21,18,15, 7) ( 5,22,19,11, 8)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,24,17,15, 8)( 2,25,18,11, 9)( 3,21,19,12,10)( 4,22,20,13, 6) ( 5,23,16,14, 7)$ |
$ 5, 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,25,19,13, 7)( 2,21,20,14, 8)( 3,22,16,15, 9)( 4,23,17,11,10) ( 5,24,18,12, 6)$ |
Group invariants
Order: | $25=5^{2}$ | |
Cyclic: | no | |
Abelian: | yes | |
Solvable: | yes | |
GAP id: | [25, 2] |
Character table: not available. |