Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $C_5^2:Q_8$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,24,18)(2,9,23,16)(3,6,22,19)(4,8,21,17)(5,10,25,20)(11,12,14,13), (1,7,11,10)(2,12,15,5)(3,17,14,25)(4,22,13,20)(8,16,9,21)(18,19,24,23) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
10T20 x 3, 20T47 x 3, 40T166 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $50$ | $4$ | $( 2, 3, 5, 4)( 6,16,21,11)( 7,18,25,14)( 8,20,24,12)( 9,17,23,15)(10,19,22,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $50$ | $4$ | $( 2, 6, 5,21)( 3,11, 4,16)( 7,10,25,22)( 8,15,24,17)( 9,20,23,12)(13,14,19,18)$ |
| $ 4, 4, 4, 4, 4, 4, 1 $ | $50$ | $4$ | $( 2,11, 5,16)( 3,21, 4, 6)( 7,13,25,19)( 8,23,24, 9)(10,18,22,14)(12,15,20,17)$ |
| $ 5, 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 5, 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 7,13,19,25)( 2, 8,14,20,21)( 3, 9,15,16,22)( 4,10,11,17,23) ( 5, 6,12,18,24)$ |
| $ 5, 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
Group invariants
| Order: | $200=2^{3} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [200, 44] |
| Character table: |
2 3 2 3 2 2 . . .
5 2 . . . . 2 2 2
1a 4a 2a 4b 4c 5a 5b 5c
2P 1a 2a 1a 2a 2a 5a 5b 5c
3P 1a 4a 2a 4b 4c 5a 5b 5c
5P 1a 4a 2a 4b 4c 1a 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 1
X.3 1 -1 1 1 -1 1 1 1
X.4 1 1 1 -1 -1 1 1 1
X.5 2 . -2 . . 2 2 2
X.6 8 . . . . 3 -2 -2
X.7 8 . . . . -2 -2 3
X.8 8 . . . . -2 3 -2
|