Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $C_5^2:C_6$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,19,16)(2,24,15)(3,4,9)(5,14,22)(6,13,17)(7,18,11)(8,23,10)(20,21,25), (1,11,14,2,17,19)(3,23,24,5,10,9)(6,15,8,22,18,25)(7,16,13,21,12,20) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
15T12 x 2, 30T35 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $25$ | $2$ | $( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)(14,18) (15,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $25$ | $3$ | $( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22) (17,18,23)$ |
| $ 6, 6, 6, 6, 1 $ | $25$ | $6$ | $( 2, 7, 6, 5,25,21)( 3,13,11, 4,19,16)( 8,12,10,24,20,22)( 9,18,15,23,14,17)$ |
| $ 6, 6, 6, 6, 1 $ | $25$ | $6$ | $( 2,21,25, 5, 6, 7)( 3,16,19, 4,11,13)( 8,22,20,24,10,12)( 9,17,14,23,15,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $25$ | $3$ | $( 2,25, 6)( 3,19,11)( 4,13,16)( 5, 7,21)( 8,20,10)( 9,14,15)(12,22,24) (17,23,18)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19) (21,23,25,22,24)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 8,15,17,24)( 2, 9,11,18,25)( 3,10,12,19,21)( 4, 6,13,20,22) ( 5, 7,14,16,23)$ |
| $ 5, 5, 5, 5, 5 $ | $6$ | $5$ | $( 1, 9,12,20,23)( 2,10,13,16,24)( 3, 6,14,17,25)( 4, 7,15,18,21) ( 5, 8,11,19,22)$ |
Group invariants
| Order: | $150=2 \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [150, 6] |
| Character table: |
2 1 1 1 1 1 1 . . . .
3 1 1 1 1 1 1 . . . .
5 2 . . . . . 2 2 2 2
1a 2a 3a 6a 6b 3b 5a 5b 5c 5d
2P 1a 1a 3b 3a 3b 3a 5b 5a 5d 5c
3P 1a 2a 1a 2a 2a 1a 5b 5a 5d 5c
5P 1a 2a 3b 6b 6a 3a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 1 1 1 1
X.3 1 -1 A -/A -A /A 1 1 1 1
X.4 1 -1 /A -A -/A A 1 1 1 1
X.5 1 1 A /A A /A 1 1 1 1
X.6 1 1 /A A /A A 1 1 1 1
X.7 6 . . . . . B *B C *C
X.8 6 . . . . . *B B *C C
X.9 6 . . . . . C *C *B B
X.10 6 . . . . . *C C B *B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
C = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
= (-3-Sqrt(5))/2 = -2-b5
|