Group action invariants
| Degree $n$ : | $25$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $D_5.D_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,21,17)(2,9,22,16)(3,8,23,20)(4,7,24,19)(5,6,25,18)(11,14)(12,13), (1,4,2,5,3)(6,22,7,23,8,24,9,25,10,21)(11,20,12,16,13,17,14,18,15,19) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: $F_5$, 20T2 Resolvents shown for degrees $\leq 47$
Subfields
Low degree siblings
20T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 6,24)( 7,25)( 8,21)( 9,22)(10,23)(11,17)(12,18)(13,19)(14,20)(15,16)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 1 $ | $25$ | $4$ | $( 2, 5)( 3, 4)( 6,11,24,17)( 7,15,25,16)( 8,14,21,20)( 9,13,22,19) (10,12,23,18)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 1 $ | $25$ | $4$ | $( 2, 5)( 3, 4)( 6,17,24,11)( 7,16,25,15)( 8,20,21,14)( 9,19,22,13) (10,18,23,12)$ |
| $ 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20) (21,22,23,24,25)$ |
| $ 10, 10, 5 $ | $10$ | $10$ | $( 1, 2, 3, 4, 5)( 6,25, 8,22,10,24, 7,21, 9,23)(11,18,13,20,15,17,12,19,14,16)$ |
| $ 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19) (21,23,25,22,24)$ |
| $ 10, 10, 5 $ | $10$ | $10$ | $( 1, 3, 5, 2, 4)( 6,21,10,25, 9,24, 8,23, 7,22)(11,19,15,18,14,17,13,16,12,20)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,15,19,23)( 2, 7,11,20,24)( 3, 8,12,16,25)( 4, 9,13,17,21) ( 5,10,14,18,22)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 7,12,17,22)( 2, 8,13,18,23)( 3, 9,14,19,24)( 4,10,15,20,25) ( 5, 6,11,16,21)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 8,14,20,21)( 2, 9,15,16,22)( 3,10,11,17,23)( 4, 6,12,18,24) ( 5, 7,13,19,25)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 9,11,18,25)( 2,10,12,19,21)( 3, 6,13,20,22)( 4, 7,14,16,23) ( 5, 8,15,17,24)$ |
| $ 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1,10,13,16,24)( 2, 6,14,17,25)( 3, 7,15,18,21)( 4, 8,11,19,22) ( 5, 9,12,20,23)$ |
Group invariants
| Order: | $100=2^{2} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [100, 10] |
| Character table: |
2 2 2 2 2 1 1 1 1 . . . . .
5 2 1 . . 2 1 2 1 2 2 2 2 2
1a 2a 4a 4b 5a 10a 5b 10b 5c 5d 5e 5f 5g
2P 1a 1a 2a 2a 5b 5b 5a 5a 5d 5g 5e 5c 5f
3P 1a 2a 4b 4a 5b 10b 5a 10a 5f 5c 5e 5g 5d
5P 1a 2a 4a 4b 1a 2a 1a 2a 1a 1a 1a 1a 1a
7P 1a 2a 4b 4a 5b 10b 5a 10a 5d 5g 5e 5c 5f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1 1 1 1 1
X.3 1 -1 A -A 1 -1 1 -1 1 1 1 1 1
X.4 1 -1 -A A 1 -1 1 -1 1 1 1 1 1
X.5 2 -2 . . B -B *B -*B *B B 2 B *B
X.6 2 -2 . . *B -*B B -B B *B 2 *B B
X.7 2 2 . . B B *B *B *B B 2 B *B
X.8 2 2 . . *B *B B B B *B 2 *B B
X.9 4 . . . 4 . 4 . -1 -1 -1 -1 -1
X.10 4 . . . C . *C . D /E -1 E /D
X.11 4 . . . C . *C . /D E -1 /E D
X.12 4 . . . *C . C . E D -1 /D /E
X.13 4 . . . *C . C . /E /D -1 D E
A = -E(4)
= -Sqrt(-1) = -i
B = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
C = 2*E(5)^2+2*E(5)^3
= -1-Sqrt(5) = -1-r5
D = -E(5)-E(5)^2+E(5)^3
E = -E(5)-E(5)^3+E(5)^4
|