Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $9$ | |
Group: | $C_2\times A_4$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $24$ | |
Generators: | (1,2)(3,9)(4,10)(5,11)(6,12)(7,8)(13,14)(15,21)(16,22)(17,23)(18,24)(19,20), (1,3,11,14,22,17)(2,4,12,13,21,18)(5,8,10,23,19,15)(6,7,9,24,20,16) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: $A_4$
Degree 6: $C_6$, $A_4$, $A_4\times C_2$
Degree 8: $A_4\times C_2$
Degree 12: $A_4$, $A_4\times C_2$, $A_4 \times C_2$
Low degree siblings
6T6, 8T13, 12T6, 12T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 9)( 4,10)( 5,11)( 6,12)( 7, 8)(13,14)(15,21)(16,22)(17,23)(18,24) (19,20)$ |
$ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1, 3,11,14,22,17)( 2, 4,12,13,21,18)( 5, 8,10,23,19,15)( 6, 7, 9,24,20,16)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 4,23)( 2, 3,24)( 5,14,21)( 6,13,22)( 7,10,12)( 8, 9,11)(15,18,20) (16,17,19)$ |
$ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1, 5, 4,14,23,21)( 2, 6, 3,13,24,22)( 7,18,10,20,12,15)( 8,17, 9,19,11,16)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 6,15)( 2, 5,16)( 3,19,12)( 4,20,11)( 7,17,21)( 8,18,22)( 9,13,23) (10,14,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 8)( 2, 7)( 3,21)( 4,22)( 5,12)( 6,11)( 9,15)(10,16)(13,20)(14,19)(17,24) (18,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,14)( 2,13)( 3,22)( 4,21)( 5,23)( 6,24)( 7,20)( 8,19)( 9,16)(10,15)(11,17) (12,18)$ |
Group invariants
Order: | $24=2^{3} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [24, 13] |
Character table: |
2 3 3 1 1 1 1 3 3 3 1 . 1 1 1 1 . 1 1a 2a 6a 3a 6b 3b 2b 2c 2P 1a 1a 3b 3b 3a 3a 1a 1a 3P 1a 2a 2c 1a 2c 1a 2b 2c 5P 1a 2a 6b 3b 6a 3a 2b 2c X.1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 1 1 -1 X.3 1 -1 A -A /A -/A 1 -1 X.4 1 -1 /A -/A A -A 1 -1 X.5 1 1 -/A -/A -A -A 1 1 X.6 1 1 -A -A -/A -/A 1 1 X.7 3 1 . . . . -1 -3 X.8 3 -1 . . . . -1 3 A = -E(3) = (1-Sqrt(-3))/2 = -b3 |