Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $8$ | |
Group: | $C_3:C_8$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $24$ | |
Generators: | (1,8,13,20,2,7,14,19)(3,17,16,6,4,18,15,5)(9,23,21,12,10,24,22,11), (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,22,14)(6,21,13)(7,24,15)(8,23,16) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $8$: $C_8$ $12$: $C_3 : C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $C_4$
Degree 6: $S_3$
Degree 8: $C_8$
Degree 12: $C_3 : C_4$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 8, 8, 8 $ | $3$ | $8$ | $( 1, 3,14,15, 2, 4,13,16)( 5,24,18,12, 6,23,17,11)( 7,10,20,21, 8, 9,19,22)$ |
$ 8, 8, 8 $ | $3$ | $8$ | $( 1, 4,14,16, 2, 3,13,15)( 5,23,18,11, 6,24,17,12)( 7, 9,20,22, 8,10,19,21)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 5,10,13,17,22, 2, 6, 9,14,18,21)( 3, 7,12,16,19,24, 4, 8,11,15,20,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 6,10,14,17,21, 2, 5, 9,13,18,22)( 3, 8,12,15,19,23, 4, 7,11,16,20,24)$ |
$ 8, 8, 8 $ | $3$ | $8$ | $( 1, 7,13,19, 2, 8,14,20)( 3,18,16, 5, 4,17,15, 6)( 9,24,21,11,10,23,22,12)$ |
$ 8, 8, 8 $ | $3$ | $8$ | $( 1, 8,13,20, 2, 7,14,19)( 3,17,16, 6, 4,18,15, 5)( 9,23,21,12,10,24,22,11)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
$ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,17, 6,18)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)$ |
$ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,14, 2,13)( 3,15, 4,16)( 5,18, 6,17)( 7,20, 8,19)( 9,22,10,21)(11,24,12,23)$ |
Group invariants
Order: | $24=2^{3} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [24, 1] |
Character table: |
2 3 3 3 3 2 2 3 3 2 2 3 3 3 1 1 . . 1 1 . . 1 1 1 1 1a 2a 8a 8b 12a 12b 8c 8d 3a 6a 4a 4b 2P 1a 1a 4b 4b 6a 6a 4a 4a 3a 3a 2a 2a 3P 1a 2a 8c 8d 4a 4b 8a 8b 1a 2a 4b 4a 5P 1a 2a 8b 8a 12a 12b 8d 8c 3a 6a 4a 4b 7P 1a 2a 8d 8c 12b 12a 8b 8a 3a 6a 4b 4a 11P 1a 2a 8c 8d 12b 12a 8a 8b 3a 6a 4b 4a X.1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 -1 -1 1 1 -1 -1 1 1 1 1 X.3 1 -1 A -A -B B -/A /A 1 -1 B -B X.4 1 -1 -/A /A B -B A -A 1 -1 -B B X.5 1 -1 /A -/A B -B -A A 1 -1 -B B X.6 1 -1 -A A -B B /A -/A 1 -1 B -B X.7 1 1 B B -1 -1 -B -B 1 1 -1 -1 X.8 1 1 -B -B -1 -1 B B 1 1 -1 -1 X.9 2 2 . . -1 -1 . . -1 -1 2 2 X.10 2 2 . . 1 1 . . -1 -1 -2 -2 X.11 2 -2 . . B -B . . -1 1 C -C X.12 2 -2 . . -B B . . -1 1 -C C A = -E(8) B = -E(4) = -Sqrt(-1) = -i C = -2*E(4) = -2*Sqrt(-1) = -2i |