Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $\SL(2,3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5,16)(2,6,15)(3,19,11)(4,20,12)(7,18,22)(8,17,21)(9,14,24)(10,13,23), (1,19,2,20)(3,10,4,9)(5,24,6,23)(7,13,8,14)(11,17,12,18)(15,22,16,21) | |
| $|\Aut(F/K)|$: | $24$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: $A_4$
Degree 6: $A_4$
Degree 8: $\SL(2,3)$
Degree 12: $A_4$
Low degree siblings
8T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3,23)( 2, 4,24)( 5,14,22)( 6,13,21)( 7,10,12)( 8, 9,11)(15,18,19) (16,17,20)$ |
| $ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1, 4,23, 2, 3,24)( 5,13,22, 6,14,21)( 7, 9,12, 8,10,11)(15,17,19,16,18,20)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5,16)( 2, 6,15)( 3,19,11)( 4,20,12)( 7,18,22)( 8,17,21)( 9,14,24) (10,13,23)$ |
| $ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1, 6,16, 2, 5,15)( 3,20,11, 4,19,12)( 7,17,22, 8,18,21)( 9,13,24,10,14,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7, 2, 8)( 3,22, 4,21)( 5,12, 6,11)( 9,16,10,15)(13,19,14,20)(17,23,18,24)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 3] |
| Character table: |
2 3 3 1 1 1 1 2
3 1 1 1 1 1 1 .
1a 2a 3a 6a 3b 6b 4a
2P 1a 1a 3b 3b 3a 3a 2a
3P 1a 2a 1a 2a 1a 2a 4a
5P 1a 2a 3b 6b 3a 6a 4a
X.1 1 1 1 1 1 1 1
X.2 1 1 A A /A /A 1
X.3 1 1 /A /A A A 1
X.4 2 -2 -1 1 -1 1 .
X.5 2 -2 -/A /A -A A .
X.6 2 -2 -A A -/A /A .
X.7 3 3 . . . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|