Show commands: Magma
Group invariants
Abstract group: | $S_3\times C_{12}$ |
| |
Order: | $72=2^{3} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $65$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $12$ |
| |
Generators: | $(1,22,17,13,9,5,2,21,18,14,10,6)(3,16,4,15)(7,20,8,19)(11,24,12,23)$, $(1,23,17,16,9,7,2,24,18,15,10,8)(3,21,19,14,11,6,4,22,20,13,12,5)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$, $C_6$ x 3 $8$: $C_4\times C_2$ $12$: $D_{6}$, $C_{12}$ x 2, $C_6\times C_2$ $18$: $S_3\times C_3$ $24$: $S_3 \times C_4$, 24T2 $36$: $C_6\times S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 6: $S_3\times C_3$
Degree 8: $C_4\times C_2$
Degree 12: $C_6\times S_3$
Low degree siblings
36T27 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
2B | $2^{12}$ | $3$ | $2$ | $12$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)$ |
2C | $2^{12}$ | $3$ | $2$ | $12$ | $( 1,19)( 2,20)( 3,10)( 4, 9)( 5,23)( 6,24)( 7,14)( 8,13)(11,17)(12,18)(15,22)(16,21)$ |
3A1 | $3^{8}$ | $1$ | $3$ | $16$ | $( 1,18, 9)( 2,17,10)( 3,20,11)( 4,19,12)( 5,22,14)( 6,21,13)( 7,23,15)( 8,24,16)$ |
3A-1 | $3^{8}$ | $1$ | $3$ | $16$ | $( 1, 9,18)( 2,10,17)( 3,11,20)( 4,12,19)( 5,14,22)( 6,13,21)( 7,15,23)( 8,16,24)$ |
3B | $3^{8}$ | $2$ | $3$ | $16$ | $( 1,18, 9)( 2,17,10)( 3,11,20)( 4,12,19)( 5,22,14)( 6,21,13)( 7,15,23)( 8,16,24)$ |
3C1 | $3^{4},1^{12}$ | $2$ | $3$ | $8$ | $( 1, 9,18)( 2,10,17)( 5,14,22)( 6,13,21)$ |
3C-1 | $3^{4},1^{12}$ | $2$ | $3$ | $8$ | $( 1,18, 9)( 2,17,10)( 5,22,14)( 6,21,13)$ |
4A1 | $4^{6}$ | $1$ | $4$ | $18$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,18, 6,17)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)$ |
4A-1 | $4^{6}$ | $1$ | $4$ | $18$ | $( 1,14, 2,13)( 3,16, 4,15)( 5,17, 6,18)( 7,20, 8,19)( 9,22,10,21)(11,24,12,23)$ |
4B1 | $4^{6}$ | $3$ | $4$ | $18$ | $( 1,24, 2,23)( 3, 5, 4, 6)( 7, 9, 8,10)(11,14,12,13)(15,18,16,17)(19,21,20,22)$ |
4B-1 | $4^{6}$ | $3$ | $4$ | $18$ | $( 1,23, 2,24)( 3, 6, 4, 5)( 7,10, 8, 9)(11,13,12,14)(15,17,16,18)(19,22,20,21)$ |
6A1 | $6^{4}$ | $1$ | $6$ | $20$ | $( 1,10,18, 2, 9,17)( 3,12,20, 4,11,19)( 5,13,22, 6,14,21)( 7,16,23, 8,15,24)$ |
6A-1 | $6^{4}$ | $1$ | $6$ | $20$ | $( 1,17, 9, 2,18,10)( 3,19,11, 4,20,12)( 5,21,14, 6,22,13)( 7,24,15, 8,23,16)$ |
6B | $6^{4}$ | $2$ | $6$ | $20$ | $( 1,10,18, 2, 9,17)( 3,19,11, 4,20,12)( 5,13,22, 6,14,21)( 7,24,15, 8,23,16)$ |
6C1 | $6^{2},2^{6}$ | $2$ | $6$ | $16$ | $( 1,17, 9, 2,18,10)( 3, 4)( 5,21,14, 6,22,13)( 7, 8)(11,12)(15,16)(19,20)(23,24)$ |
6C-1 | $6^{2},2^{6}$ | $2$ | $6$ | $16$ | $( 1,10,18, 2, 9,17)( 3, 4)( 5,13,22, 6,14,21)( 7, 8)(11,12)(15,16)(19,20)(23,24)$ |
6D1 | $6^{4}$ | $3$ | $6$ | $20$ | $( 1,11,18, 3, 9,20)( 2,12,17, 4,10,19)( 5,16,22, 8,14,24)( 6,15,21, 7,13,23)$ |
6D-1 | $6^{4}$ | $3$ | $6$ | $20$ | $( 1,20, 9, 3,18,11)( 2,19,10, 4,17,12)( 5,24,14, 8,22,16)( 6,23,13, 7,21,15)$ |
6E1 | $6^{4}$ | $3$ | $6$ | $20$ | $( 1, 4,18,19, 9,12)( 2, 3,17,20,10,11)( 5, 7,22,23,14,15)( 6, 8,21,24,13,16)$ |
6E-1 | $6^{4}$ | $3$ | $6$ | $20$ | $( 1,12, 9,19,18, 4)( 2,11,10,20,17, 3)( 5,15,14,23,22, 7)( 6,16,13,24,21, 8)$ |
12A1 | $12^{2}$ | $1$ | $12$ | $22$ | $( 1, 5,10,13,18,22, 2, 6, 9,14,17,21)( 3, 8,12,15,20,24, 4, 7,11,16,19,23)$ |
12A-1 | $12^{2}$ | $1$ | $12$ | $22$ | $( 1,21,17,14, 9, 6, 2,22,18,13,10, 5)( 3,23,19,16,11, 7, 4,24,20,15,12, 8)$ |
12A5 | $12^{2}$ | $1$ | $12$ | $22$ | $( 1,22,17,13, 9, 5, 2,21,18,14,10, 6)( 3,24,19,15,11, 8, 4,23,20,16,12, 7)$ |
12A-5 | $12^{2}$ | $1$ | $12$ | $22$ | $( 1, 6,10,14,18,21, 2, 5, 9,13,17,22)( 3, 7,12,16,20,23, 4, 8,11,15,19,24)$ |
12B1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1, 6,10,14,18,21, 2, 5, 9,13,17,22)( 3,23,19,16,11, 7, 4,24,20,15,12, 8)$ |
12B-1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1, 5,10,13,18,22, 2, 6, 9,14,17,21)( 3,24,19,15,11, 8, 4,23,20,16,12, 7)$ |
12C1 | $12,4^{3}$ | $2$ | $12$ | $20$ | $( 1,21,17,14, 9, 6, 2,22,18,13,10, 5)( 3,15, 4,16)( 7,19, 8,20)(11,23,12,24)$ |
12C-1 | $12,4^{3}$ | $2$ | $12$ | $20$ | $( 1,14, 2,13)( 3, 8,12,15,20,24, 4, 7,11,16,19,23)( 5,17, 6,18)( 9,22,10,21)$ |
12C5 | $12,4^{3}$ | $2$ | $12$ | $20$ | $( 1,13, 2,14)( 3, 7,12,16,20,23, 4, 8,11,15,19,24)( 5,18, 6,17)( 9,21,10,22)$ |
12C-5 | $12,4^{3}$ | $2$ | $12$ | $20$ | $( 1,22,17,13, 9, 5, 2,21,18,14,10, 6)( 3,16, 4,15)( 7,20, 8,19)(11,24,12,23)$ |
12D1 | $12^{2}$ | $3$ | $12$ | $22$ | $( 1, 7,17,24, 9,15, 2, 8,18,23,10,16)( 3,13,19, 5,11,21, 4,14,20, 6,12,22)$ |
12D-1 | $12^{2}$ | $3$ | $12$ | $22$ | $( 1, 8,10,15,18,24, 2, 7, 9,16,17,23)( 3, 5,12,13,20,22, 4, 6,11,14,19,21)$ |
12D5 | $12^{2}$ | $3$ | $12$ | $22$ | $( 1,15,10,24,18, 7, 2,16, 9,23,17, 8)( 3,21,12, 5,20,13, 4,22,11, 6,19,14)$ |
12D-5 | $12^{2}$ | $3$ | $12$ | $22$ | $( 1,24,17,15, 9, 8, 2,23,18,16,10, 7)( 3,22,19,13,11, 5, 4,21,20,14,12, 6)$ |
Malle's constant $a(G)$: $1/8$
Character table
36 x 36 character table
Regular extensions
Data not computed