Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $6$ | |
Group: | $C_2\times C_3:C_4$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $24$ | |
Generators: | (1,7,17,24,9,15)(2,8,18,23,10,16)(3,13,19,6,11,21)(4,14,20,5,12,22), (1,22,2,21)(3,15,4,16)(5,18,6,17)(7,12,8,11)(9,14,10,13)(19,24,20,23) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$, $C_3 : C_4$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 8: $C_4\times C_2$
Degree 12: $D_6$, $C_3 : C_4$ x 2
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 3, 2, 4)( 5,24, 6,23)( 7,21, 8,22)( 9,19,10,20)(11,18,12,17)(13,16,14,15)$ |
$ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 4, 2, 3)( 5,23, 6,24)( 7,22, 8,21)( 9,20,10,19)(11,17,12,18)(13,15,14,16)$ |
$ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 5, 2, 6)( 3,24, 4,23)( 7,20, 8,19)( 9,22,10,21)(11,15,12,16)(13,17,14,18)$ |
$ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 6, 2, 5)( 3,23, 4,24)( 7,19, 8,20)( 9,21,10,22)(11,16,12,15)(13,18,14,17)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 7,17,24, 9,15)( 2, 8,18,23,10,16)( 3,13,19, 6,11,21)( 4,14,20, 5,12,22)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 8,17,23, 9,16)( 2, 7,18,24,10,15)( 3,14,19, 5,11,22)( 4,13,20, 6,12,21)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,23)( 2,24)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22) (20,21)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,24)( 2,23)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,13)(12,14)(15,17)(16,18)(19,21) (20,22)$ |
Group invariants
Order: | $24=2^{3} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [24, 7] |
Character table: |
2 3 3 3 3 3 3 2 2 2 2 3 3 3 1 1 . . . . 1 1 1 1 1 1 1a 2a 4a 4b 4c 4d 6a 6b 3a 6c 2b 2c 2P 1a 1a 2a 2a 2a 2a 3a 3a 3a 3a 1a 1a 3P 1a 2a 4b 4a 4d 4c 2c 2b 1a 2a 2b 2c 5P 1a 2a 4a 4b 4c 4d 6a 6b 3a 6c 2b 2c X.1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 -1 -1 -1 -1 1 1 1 1 1 1 X.3 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 X.4 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 X.5 1 -1 A -A A -A -1 1 1 -1 1 -1 X.6 1 -1 -A A -A A -1 1 1 -1 1 -1 X.7 1 -1 A -A -A A 1 -1 1 -1 -1 1 X.8 1 -1 -A A A -A 1 -1 1 -1 -1 1 X.9 2 -2 . . . . -1 1 -1 1 -2 2 X.10 2 -2 . . . . 1 -1 -1 1 2 -2 X.11 2 2 . . . . -1 -1 -1 -1 2 2 X.12 2 2 . . . . 1 1 -1 -1 -2 -2 A = -E(4) = -Sqrt(-1) = -i |