Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $C_3:Q_8$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20,2,19)(3,17,4,18)(5,15,6,16)(7,13,8,14)(9,12,10,11)(21,23,22,24), (1,7,18,23,9,15,2,8,17,24,10,16)(3,13,20,5,11,21,4,14,19,6,12,22) | |
| $|\Aut(F/K)|$: | $24$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $Q_8$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 8: $Q_8$
Degree 12: $D_6$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5,23, 6,24)( 7,22, 8,21)( 9,19,10,20)(11,18,12,17)(13,15,14,16)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 5, 2, 6)( 3,24, 4,23)( 7,20, 8,19)( 9,22,10,21)(11,15,12,16)(13,17,14,18)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1, 7,18,23, 9,15, 2, 8,17,24,10,16)( 3,13,20, 5,11,21, 4,14,19, 6,12,22)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1, 8,18,24, 9,16, 2, 7,17,23,10,15)( 3,14,20, 6,11,22, 4,13,19, 5,12,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,23, 2,24)( 3, 5, 4, 6)( 7, 9, 8,10)(11,14,12,13)(15,17,16,18)(19,22,20,21)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 4] |
| Character table: |
2 3 3 2 2 2 2 2 2 2
3 1 1 . . 1 1 1 1 1
1a 2a 4a 4b 12a 12b 3a 6a 4c
2P 1a 1a 2a 2a 6a 6a 3a 3a 2a
3P 1a 2a 4a 4b 4c 4c 1a 2a 4c
5P 1a 2a 4a 4b 12b 12a 3a 6a 4c
7P 1a 2a 4a 4b 12b 12a 3a 6a 4c
11P 1a 2a 4a 4b 12a 12b 3a 6a 4c
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1
X.3 1 1 -1 1 -1 -1 1 1 -1
X.4 1 1 1 -1 -1 -1 1 1 -1
X.5 2 -2 . . . . 2 -2 .
X.6 2 2 . . -1 -1 -1 -1 2
X.7 2 2 . . 1 1 -1 -1 -2
X.8 2 -2 . . A -A -1 1 .
X.9 2 -2 . . -A A -1 1 .
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
|