Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $48$ | |
| Group : | $C_2\times S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,24,4,18,21,14)(2,23,3,17,22,13)(5,7,11,10,19,16)(6,8,12,9,20,15), (1,6,12,23)(2,5,11,24)(3,8,14,19)(4,7,13,20)(9,15,22,18)(10,16,21,17) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $S_4$
Degree 6: $D_{6}$, $S_4$, $S_4\times C_2$
Degree 8: $S_4\times C_2$
Degree 12: $S_4$, $C_2 \times S_4$, $C_2 \times S_4$
Low degree siblings
6T11 x 2, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3,22)( 4,21)( 5, 8)( 6, 7)( 9,19)(10,20)(11,15)(12,16)(13,23)(14,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5,13)( 6,14)( 7,24)( 8,23)(11,16)(12,15)(17,18)(19,21) (20,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,20)( 4,19)( 5,23)( 6,24)( 7,14)( 8,13)( 9,21)(10,22)(11,12)(15,16) (17,18)$ |
| $ 6, 6, 6, 6 $ | $8$ | $6$ | $( 1, 3, 6,18,13, 9)( 2, 4, 5,17,14,10)( 7,24,12,19,21,15)( 8,23,11,20,22,16)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3,16,19)( 2, 4,15,20)( 5,23, 9,21)( 6,24,10,22)( 7,18,13,11)( 8,17,14,12)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 4,21)( 2, 3,22)( 5,11,19)( 6,12,20)( 7,10,16)( 8, 9,15)(13,23,17) (14,24,18)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 6,12,23)( 2, 5,11,24)( 3, 8,14,19)( 4, 7,13,20)( 9,15,22,18)(10,16,21,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,24)( 6,23)( 7,20)( 8,19)( 9,22)(10,21)(15,18) (16,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,18)( 2,17)( 3,13)( 4,14)( 5,10)( 6, 9)( 7,19)( 8,20)(11,16)(12,15)(21,24) (22,23)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 48] |
| Character table: |
2 4 3 3 4 1 3 1 3 4 4
3 1 . . . 1 . 1 . . 1
1a 2a 2b 2c 6a 4a 3a 4b 2d 2e
2P 1a 1a 1a 1a 3a 2d 3a 2d 1a 1a
3P 1a 2a 2b 2c 2e 4a 1a 4b 2d 2e
5P 1a 2a 2b 2c 6a 4a 3a 4b 2d 2e
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 -1 1 1 -1 1 -1
X.4 1 1 -1 -1 -1 -1 1 1 1 -1
X.5 2 . . -2 1 . -1 . 2 -2
X.6 2 . . 2 -1 . -1 . 2 2
X.7 3 -1 -1 -1 . 1 . 1 -1 3
X.8 3 -1 1 1 . -1 . 1 -1 -3
X.9 3 1 -1 1 . 1 . -1 -1 -3
X.10 3 1 1 -1 . -1 . -1 -1 3
|