Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $47$ | |
| Group : | $C_2\times S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,10,13,18,22)(2,5,9,14,17,21)(3,7,12,15,19,24)(4,8,11,16,20,23), (1,23,14,12)(2,24,13,11)(3,10)(4,9)(5,8,18,19)(6,7,17,20)(15,22)(16,21) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 6: $S_3$, $D_{6}$ x 2, $S_4$, $S_4$, $S_4\times C_2$ x 2
Degree 8: None
Degree 12: $D_6$, $S_4$, $C_2\times S_4$, $C_2 \times S_4$ x 2, $C_2 \times S_4$ x 2
Low degree siblings
6T11 x 2, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3,16)( 4,15)( 5,18)( 6,17)( 9,22)(10,21)(11,24)(12,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5,17)( 6,18)( 7, 8)( 9,10)(11,23)(12,24)(13,14)(15,16)(19,20) (21,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,12)( 6,11)( 7,22)( 8,21)( 9,20)(10,19)(13,15)(14,16)(17,24) (18,23)$ |
| $ 4, 4, 4, 4, 2, 2, 2, 2 $ | $6$ | $4$ | $( 1, 3,14,16)( 2, 4,13,15)( 5,23)( 6,24)( 7,22,20, 9)( 8,21,19,10)(11,17) (12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,24)( 6,23)( 7,21)( 8,22)( 9,19)(10,20)(11,18)(12,17)(13,16) (14,15)$ |
| $ 4, 4, 4, 4, 2, 2, 2, 2 $ | $6$ | $4$ | $( 1, 4,14,15)( 2, 3,13,16)( 5,11)( 6,12)( 7,21,20,10)( 8,22,19, 9)(17,23) (18,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 5,21)( 2, 6,22)( 3, 8,12)( 4, 7,11)( 9,13,17)(10,14,18)(15,20,24) (16,19,23)$ |
| $ 6, 6, 6, 6 $ | $8$ | $6$ | $( 1, 6,10,13,18,22)( 2, 5, 9,14,17,21)( 3, 7,12,15,19,24)( 4, 8,11,16,20,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23) (12,24)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 48] |
| Character table: |
2 4 4 4 3 3 3 3 1 1 4
3 1 . . . . . . 1 1 1
1a 2a 2b 2c 4a 2d 4b 3a 6a 2e
2P 1a 1a 1a 1a 2a 1a 2a 3a 3a 1a
3P 1a 2a 2b 2c 4a 2d 4b 1a 2e 2e
5P 1a 2a 2b 2c 4a 2d 4b 3a 6a 2e
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 -1 1 1 1 -1 -1
X.3 1 1 -1 1 1 -1 -1 1 -1 -1
X.4 1 1 1 -1 -1 -1 -1 1 1 1
X.5 2 2 -2 . . . . -1 1 -2
X.6 2 2 2 . . . . -1 -1 2
X.7 3 -1 -1 -1 1 -1 1 . . 3
X.8 3 -1 -1 1 -1 1 -1 . . 3
X.9 3 -1 1 -1 1 1 -1 . . -3
X.10 3 -1 1 1 -1 -1 1 . . -3
|