Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $45$ | |
| Group : | $C_2\times C_3:D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24), (1,23)(2,24)(3,21)(4,22)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,13)(12,14), (1,9,17)(2,10,18)(3,24,19,15,11,7)(4,23,20,16,12,8)(5,14,22)(6,13,21) | |
| $|\Aut(F/K)|$: | $12$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 3 16: $D_4\times C_2$ 24: $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Degree 12: $D_6$, $(C_6\times C_2):C_2$ x 2
Low degree siblings
24T25 x 2, 24T45Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,15)( 4,16)( 7,19)( 8,20)(11,24)(12,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,16)( 4,15)( 5, 6)( 7,20)( 8,19)( 9,10)(11,23)(12,24)(13,14)(17,18) (21,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,24)( 6,23)( 7,22)( 8,21)( 9,19)(10,20)(11,17)(12,18)(13,16) (14,15)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3,14,15)( 2, 4,13,16)( 5,24,17,11)( 6,23,18,12)( 7, 9,19,22)( 8,10,20,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,23)( 6,24)( 7,21)( 8,22)( 9,20)(10,19)(11,18)(12,17)(13,15) (14,16)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 4,14,16)( 2, 3,13,15)( 5,23,17,12)( 6,24,18,11)( 7,10,19,21)( 8, 9,20,22)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 5, 9,14,17,22)( 2, 6,10,13,18,21)( 3, 7,11,15,19,24)( 4, 8,12,16,20,23)$ |
| $ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 5, 9,14,17,22)( 2, 6,10,13,18,21)( 3,19,11)( 4,20,12)( 7,24,15)( 8,23,16)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6, 9,13,17,21)( 2, 5,10,14,18,22)( 3, 8,11,16,19,23)( 4, 7,12,15,20,24)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6, 9,13,17,21)( 2, 5,10,14,18,22)( 3,20,11, 4,19,12)( 7,23,15, 8,24,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,18)( 6,17)( 7,20)( 8,19)( 9,21)(10,22)(11,23) (12,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,22)(10,21)(11,24) (12,23)$ |
| $ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,17, 9)( 2,18,10)( 3, 7,11,15,19,24)( 4, 8,12,16,20,23)( 5,22,14)( 6,21,13)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,18, 9, 2,17,10)( 3, 8,11,16,19,23)( 4, 7,12,15,20,24)( 5,21,14, 6,22,13)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 43] |
| Character table: |
2 4 3 4 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3
3 1 1 1 1 . . . . 1 1 1 1 1 1 1 1 1 1
1a 2a 2b 2c 2d 4a 2e 4b 6a 6b 6c 6d 3a 6e 2f 2g 6f 6g
2P 1a 1a 1a 1a 1a 2g 1a 2g 3a 3a 3a 3a 3a 3a 1a 1a 3a 3a
3P 1a 2a 2b 2c 2d 4a 2e 4b 2g 2a 2f 2c 1a 2b 2f 2g 2a 2c
5P 1a 2a 2b 2c 2d 4a 2e 4b 6a 6f 6c 6g 3a 6e 2f 2g 6b 6d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1
X.3 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 -1 -1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1
X.6 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1
X.7 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1
X.9 2 -2 -2 2 . . . . -1 1 1 -1 -1 1 -2 2 1 -1
X.10 2 -2 2 -2 . . . . -1 1 -1 1 -1 -1 2 2 1 1
X.11 2 2 -2 -2 . . . . -1 -1 1 1 -1 1 -2 2 -1 1
X.12 2 2 2 2 . . . . -1 -1 -1 -1 -1 -1 2 2 -1 -1
X.13 2 . 2 . . . . . -2 . -2 . 2 2 -2 -2 . .
X.14 2 . -2 . . . . . -2 . 2 . 2 -2 2 -2 . .
X.15 2 . -2 . . . . . 1 A -1 -A -1 1 2 -2 -A A
X.16 2 . -2 . . . . . 1 -A -1 A -1 1 2 -2 A -A
X.17 2 . 2 . . . . . 1 A 1 A -1 -1 -2 -2 -A -A
X.18 2 . 2 . . . . . 1 -A 1 -A -1 -1 -2 -2 A A
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|