Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $C_3:D_8$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,7)(3,6)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,18)(16,17), (1,6,9,13,17,21)(2,5,10,14,18,22)(3,20,11,4,19,12)(7,24,15)(8,23,16) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 16: $D_{8}$ 24: $(C_6\times C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Degree 8: $D_{8}$
Degree 12: $(C_6\times C_2):C_2$
Low degree siblings
24T37Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,16)( 4,15)( 5, 6)( 7,20)( 8,19)(11,23)(12,24)(13,14)(21,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 3)( 2, 4)( 5,23)( 6,24)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,15) (14,16)$ |
| $ 8, 8, 8 $ | $6$ | $8$ | $( 1, 3,14,15, 2, 4,13,16)( 5,24,18,12, 6,23,17,11)( 7,10,20,21, 8, 9,19,22)$ |
| $ 8, 8, 8 $ | $6$ | $8$ | $( 1, 4,14,16, 2, 3,13,15)( 5,23,18,11, 6,24,17,12)( 7, 9,20,22, 8,10,19,21)$ |
| $ 12, 12 $ | $4$ | $12$ | $( 1, 5,10,13,17,22, 2, 6, 9,14,18,21)( 3, 7,12,16,19,24, 4, 8,11,15,20,23)$ |
| $ 6, 6, 6, 3, 3 $ | $4$ | $6$ | $( 1, 5, 9,14,17,22)( 2, 6,10,13,18,21)( 3,19,11)( 4,20,12)( 7,23,15, 8,24,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,17, 6,18)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)$ |
| $ 6, 6, 6, 3, 3 $ | $4$ | $6$ | $( 1,17, 9)( 2,18,10)( 3, 8,11,16,19,23)( 4, 7,12,15,20,24)( 5,21,14, 6,22,13)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 15] |
| Character table: |
2 4 2 4 2 3 3 2 2 3 3 3 2
3 1 1 1 . . . 1 1 1 1 1 1
1a 2a 2b 2c 8a 8b 12a 6a 3a 6b 4a 6c
2P 1a 1a 1a 1a 4a 4a 6b 3a 3a 3a 2b 3a
3P 1a 2a 2b 2c 8b 8a 4a 2a 1a 2b 4a 2a
5P 1a 2a 2b 2c 8b 8a 12a 6c 3a 6b 4a 6a
7P 1a 2a 2b 2c 8a 8b 12a 6a 3a 6b 4a 6c
11P 1a 2a 2b 2c 8b 8a 12a 6c 3a 6b 4a 6a
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 -1 1 1 1 -1
X.3 1 -1 1 1 -1 -1 1 -1 1 1 1 -1
X.4 1 1 1 -1 -1 -1 1 1 1 1 1 1
X.5 2 . 2 . . . -2 . 2 2 -2 .
X.6 2 -2 2 . . . -1 1 -1 -1 2 1
X.7 2 2 2 . . . -1 -1 -1 -1 2 -1
X.8 2 . -2 . A -A . . 2 -2 . .
X.9 2 . -2 . -A A . . 2 -2 . .
X.10 2 . 2 . . . 1 B -1 -1 -2 -B
X.11 2 . 2 . . . 1 -B -1 -1 -2 B
X.12 4 . -4 . . . . . -2 2 . .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
B = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|