Show commands: Magma
Group invariants
| Abstract group: | $C_3\times D_8$ |
| |
| Order: | $48=2^{4} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $40$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(1,14)(2,13)(3,4)(5,17)(6,18)(9,22)(10,21)(11,12)(19,20)$, $(1,11,9,19,17,3)(2,12,10,20,18,4)(5,15,14,24,22,7)(6,16,13,23,21,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $8$: $D_{4}$ $12$: $C_6\times C_2$ $16$: $D_{8}$ $24$: $D_4 \times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: $D_{4}$
Degree 6: $C_6$
Degree 8: $D_{8}$
Degree 12: $D_4 \times C_3$
Low degree siblings
24T40Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| 2B | $2^{9},1^{6}$ | $4$ | $2$ | $9$ | $( 1,14)( 2,13)( 3, 4)( 5,17)( 6,18)( 9,22)(10,21)(11,12)(19,20)$ |
| 2C | $2^{12}$ | $4$ | $2$ | $12$ | $( 1, 7)( 2, 8)( 3,21)( 4,22)( 5,12)( 6,11)( 9,15)(10,16)(13,19)(14,20)(17,24)(18,23)$ |
| 3A1 | $3^{8}$ | $1$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,19,11)( 4,20,12)( 5,22,14)( 6,21,13)( 7,24,15)( 8,23,16)$ |
| 3A-1 | $3^{8}$ | $1$ | $3$ | $16$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24)( 8,16,23)$ |
| 4A | $4^{6}$ | $2$ | $4$ | $18$ | $( 1,14, 2,13)( 3,16, 4,15)( 5,18, 6,17)( 7,19, 8,20)( 9,22,10,21)(11,23,12,24)$ |
| 6A1 | $6^{4}$ | $1$ | $6$ | $20$ | $( 1,18, 9, 2,17,10)( 3,20,11, 4,19,12)( 5,21,14, 6,22,13)( 7,23,15, 8,24,16)$ |
| 6A-1 | $6^{4}$ | $1$ | $6$ | $20$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
| 6B1 | $6^{3},3^{2}$ | $4$ | $6$ | $19$ | $( 1,22,17,14, 9, 5)( 2,21,18,13,10, 6)( 3,12,19, 4,11,20)( 7,15,24)( 8,16,23)$ |
| 6B-1 | $6^{3},3^{2}$ | $4$ | $6$ | $19$ | $( 1, 6, 9,13,17,21)( 2, 5,10,14,18,22)( 3,19,11)( 4,20,12)( 7,23,15, 8,24,16)$ |
| 6C1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1,24, 9, 7,17,15)( 2,23,10, 8,18,16)( 3,13,11,21,19, 6)( 4,14,12,22,20, 5)$ |
| 6C-1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1,16,17, 8, 9,23)( 2,15,18, 7,10,24)( 3, 5,19,22,11,14)( 4, 6,20,21,12,13)$ |
| 8A1 | $8^{3}$ | $2$ | $8$ | $21$ | $( 1, 8,14,20, 2, 7,13,19)( 3, 9,16,22, 4,10,15,21)( 5,12,18,24, 6,11,17,23)$ |
| 8A3 | $8^{3}$ | $2$ | $8$ | $21$ | $( 1,20,13, 8, 2,19,14, 7)( 3,22,15, 9, 4,21,16,10)( 5,24,17,12, 6,23,18,11)$ |
| 12A1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1,21,18,14, 9, 6, 2,22,17,13,10, 5)( 3,24,20,16,11, 7, 4,23,19,15,12, 8)$ |
| 12A-1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1, 5,10,13,17,22, 2, 6, 9,14,18,21)( 3, 8,12,15,19,23, 4, 7,11,16,20,24)$ |
| 24A1 | $24$ | $2$ | $24$ | $23$ | $( 1,12,21, 8,18, 3,14,24, 9,20, 6,16, 2,11,22, 7,17, 4,13,23,10,19, 5,15)$ |
| 24A-1 | $24$ | $2$ | $24$ | $23$ | $( 1, 4, 6, 8,10,11,14,15,17,20,21,23, 2, 3, 5, 7, 9,12,13,16,18,19,22,24)$ |
| 24A5 | $24$ | $2$ | $24$ | $23$ | $( 1, 3, 6, 7,10,12,14,16,17,19,21,24, 2, 4, 5, 8, 9,11,13,15,18,20,22,23)$ |
| 24A-5 | $24$ | $2$ | $24$ | $23$ | $( 1,11,21, 7,18, 4,14,23, 9,19, 6,15, 2,12,22, 8,17, 3,13,24,10,20, 5,16)$ |
Malle's constant $a(G)$: $1/9$
Character table
| 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 8A1 | 8A3 | 12A1 | 12A-1 | 24A1 | 24A-1 | 24A5 | 24A-5 | ||
| Size | 1 | 1 | 4 | 4 | 1 | 1 | 2 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 2A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 4A | 4A | 6A1 | 6A-1 | 12A1 | 12A-1 | 12A-1 | 12A1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2C | 2C | 8A3 | 8A1 | 4A | 4A | 8A1 | 8A1 | 8A3 | 8A3 | |
| Type | ||||||||||||||||||||||
| 48.25.1a | R | |||||||||||||||||||||
| 48.25.1b | R | |||||||||||||||||||||
| 48.25.1c | R | |||||||||||||||||||||
| 48.25.1d | R | |||||||||||||||||||||
| 48.25.1e1 | C | |||||||||||||||||||||
| 48.25.1e2 | C | |||||||||||||||||||||
| 48.25.1f1 | C | |||||||||||||||||||||
| 48.25.1f2 | C | |||||||||||||||||||||
| 48.25.1g1 | C | |||||||||||||||||||||
| 48.25.1g2 | C | |||||||||||||||||||||
| 48.25.1h1 | C | |||||||||||||||||||||
| 48.25.1h2 | C | |||||||||||||||||||||
| 48.25.2a | R | |||||||||||||||||||||
| 48.25.2b1 | R | |||||||||||||||||||||
| 48.25.2b2 | R | |||||||||||||||||||||
| 48.25.2c1 | C | |||||||||||||||||||||
| 48.25.2c2 | C | |||||||||||||||||||||
| 48.25.2d1 | C | |||||||||||||||||||||
| 48.25.2d2 | C | |||||||||||||||||||||
| 48.25.2d3 | C | |||||||||||||||||||||
| 48.25.2d4 | C |
Regular extensions
Data not computed