Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $37$ | |
| Group : | $C_3:D_8$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,13,4,2,15,14,3)(5,11,17,23,6,12,18,24)(7,22,19,9,8,21,20,10), (1,15,17,7,9,24)(2,16,18,8,10,23)(3,5,19,22,11,14)(4,6,20,21,12,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 16: $D_{8}$ 24: $(C_6\times C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 8: $D_{8}$
Degree 12: $(C_6\times C_2):C_2$
Low degree siblings
24T43Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 3,23)( 4,24)( 5,21)( 6,22)( 7,20)( 8,19)( 9,17)(10,18)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 8, 8, 8 $ | $6$ | $8$ | $( 1, 3,14,15, 2, 4,13,16)( 5,24,18,12, 6,23,17,11)( 7,10,20,21, 8, 9,19,22)$ |
| $ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1, 3,17,19, 9,11)( 2, 4,18,20,10,12)( 5, 8,22,23,14,16)( 6, 7,21,24,13,15)$ |
| $ 8, 8, 8 $ | $6$ | $8$ | $( 1, 4,14,16, 2, 3,13,15)( 5,23,18,11, 6,24,17,12)( 7, 9,20,22, 8,10,19,21)$ |
| $ 12, 12 $ | $4$ | $12$ | $( 1, 5,10,13,17,22, 2, 6, 9,14,18,21)( 3, 7,12,16,19,24, 4, 8,11,15,20,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3,22)( 4,21)( 5,11)( 6,12)( 9,15)(10,16)(13,20)(14,19)(17,24) (18,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
| $ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1,11, 9,19,17, 3)( 2,12,10,20,18, 4)( 5,16,14,23,22, 8)( 6,15,13,24,21, 7)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,17, 6,18)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 15] |
| Character table: |
2 4 2 4 3 2 3 2 2 3 3 2 3
3 1 . 1 . 1 . 1 1 1 1 1 1
1a 2a 2b 8a 6a 8b 12a 2c 3a 6b 6c 4a
2P 1a 1a 1a 4a 3a 4a 6b 1a 3a 3a 3a 2b
3P 1a 2a 2b 8b 2c 8a 4a 2c 1a 2b 2c 4a
5P 1a 2a 2b 8b 6c 8a 12a 2c 3a 6b 6a 4a
7P 1a 2a 2b 8a 6a 8b 12a 2c 3a 6b 6c 4a
11P 1a 2a 2b 8b 6c 8a 12a 2c 3a 6b 6a 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 1 1 1 1 1
X.3 1 -1 1 1 -1 1 1 -1 1 1 -1 1
X.4 1 1 1 -1 -1 -1 1 -1 1 1 -1 1
X.5 2 . 2 . . . -2 . 2 2 . -2
X.6 2 . 2 . -1 . -1 2 -1 -1 -1 2
X.7 2 . 2 . 1 . -1 -2 -1 -1 1 2
X.8 2 . -2 A . -A . . 2 -2 . .
X.9 2 . -2 -A . A . . 2 -2 . .
X.10 2 . 2 . B . 1 . -1 -1 -B -2
X.11 2 . 2 . -B . 1 . -1 -1 B -2
X.12 4 . -4 . . . . . -2 2 . .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
B = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|