Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $34$ | |
Group: | $D_{24}$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $2$ | |
Generators: | (1,8)(2,7)(3,6)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,18)(16,17), (1,6)(2,5)(7,23)(8,24)(9,21)(10,22)(11,19)(12,20)(13,17)(14,18)(15,16) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $16$: $D_{8}$ $24$: $D_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 8: $D_{8}$
Degree 12: $D_{12}$
Low degree siblings
24T34Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 3,24)( 4,23)( 5,21)( 6,22)( 7,19)( 8,20)( 9,17)(10,18)(11,15)(12,16)(13,14)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 3)( 2, 4)( 5,23)( 6,24)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,15) (14,16)$ |
$ 24 $ | $2$ | $24$ | $( 1, 3, 6, 8,10,12,14,15,17,19,21,23, 2, 4, 5, 7, 9,11,13,16,18,20,22,24)$ |
$ 24 $ | $2$ | $24$ | $( 1, 4, 6, 7,10,11,14,16,17,20,21,24, 2, 3, 5, 8, 9,12,13,15,18,19,22,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 5,10,13,17,22, 2, 6, 9,14,18,21)( 3, 7,12,16,19,24, 4, 8,11,15,20,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 6,10,14,17,21, 2, 5, 9,13,18,22)( 3, 8,12,15,19,23, 4, 7,11,16,20,24)$ |
$ 8, 8, 8 $ | $2$ | $8$ | $( 1, 7,14,20, 2, 8,13,19)( 3, 9,15,22, 4,10,16,21)( 5,12,18,23, 6,11,17,24)$ |
$ 8, 8, 8 $ | $2$ | $8$ | $( 1, 8,14,19, 2, 7,13,20)( 3,10,15,21, 4, 9,16,22)( 5,11,18,24, 6,12,17,23)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
$ 24 $ | $2$ | $24$ | $( 1,11,21, 8,18, 4,14,24, 9,19, 6,16, 2,12,22, 7,17, 3,13,23,10,20, 5,15)$ |
$ 24 $ | $2$ | $24$ | $( 1,12,21, 7,18, 3,14,23, 9,20, 6,15, 2,11,22, 8,17, 4,13,24,10,19, 5,16)$ |
$ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,17, 6,18)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)$ |
Group invariants
Order: | $48=2^{4} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [48, 7] |
Character table: |
2 4 2 4 2 3 3 3 3 3 3 3 3 3 3 3 3 1 . 1 . 1 1 1 1 1 1 1 1 1 1 1 1a 2a 2b 2c 24a 24b 12a 12b 8a 8b 3a 6a 24c 24d 4a 2P 1a 1a 1a 1a 12b 12b 6a 6a 4a 4a 3a 3a 12a 12a 2b 3P 1a 2a 2b 2c 8b 8a 4a 4a 8b 8a 1a 2b 8b 8a 4a 5P 1a 2a 2b 2c 24d 24c 12b 12a 8b 8a 3a 6a 24b 24a 4a 7P 1a 2a 2b 2c 24c 24d 12b 12a 8a 8b 3a 6a 24a 24b 4a 11P 1a 2a 2b 2c 24b 24a 12a 12b 8b 8a 3a 6a 24d 24c 4a 13P 1a 2a 2b 2c 24b 24a 12a 12b 8b 8a 3a 6a 24d 24c 4a 17P 1a 2a 2b 2c 24c 24d 12b 12a 8a 8b 3a 6a 24a 24b 4a 19P 1a 2a 2b 2c 24d 24c 12b 12a 8b 8a 3a 6a 24b 24a 4a 23P 1a 2a 2b 2c 24a 24b 12a 12b 8a 8b 3a 6a 24c 24d 4a X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 X.3 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 X.4 1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 X.5 2 . 2 . . . -2 -2 . . 2 2 . . -2 X.6 2 . 2 . 1 1 -1 -1 -2 -2 -1 -1 1 1 2 X.7 2 . 2 . -1 -1 -1 -1 2 2 -1 -1 -1 -1 2 X.8 2 . -2 . A -A . . A -A 2 -2 A -A . X.9 2 . -2 . -A A . . -A A 2 -2 -A A . X.10 2 . -2 . B -B -D D -A A -1 1 C -C . X.11 2 . -2 . C -C D -D -A A -1 1 B -B . X.12 2 . -2 . -C C D -D A -A -1 1 -B B . X.13 2 . -2 . -B B -D D A -A -1 1 -C C . X.14 2 . 2 . D D 1 1 . . -1 -1 -D -D -2 X.15 2 . 2 . -D -D 1 1 . . -1 -1 D D -2 A = -E(8)+E(8)^3 = -Sqrt(2) = -r2 B = -E(24)+E(24)^11 C = -E(24)^17+E(24)^19 D = -E(12)^7+E(12)^11 = Sqrt(3) = r3 |