Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $33$ | |
| Group : | $D_6:C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,12)(4,11)(5,22)(6,21)(7,8)(9,17)(10,18)(15,23)(16,24)(19,20), (1,15,6,19,9,24,13,3,17,7,21,11)(2,16,5,20,10,23,14,4,18,8,22,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $D_{4}$ x 2, $C_4\times C_2$ 12: $D_{6}$ 16: $C_2^2:C_4$ 24: $S_3 \times C_4$, $D_{12}$, $(C_6\times C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 8: $C_2^2:C_4$
Degree 12: $S_3 \times C_4$, $D_{12}$, $(C_6\times C_2):C_2$
Low degree siblings
24T33Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3,12)( 4,11)( 5,22)( 6,21)( 7, 8)( 9,17)(10,18)(15,23)(16,24)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1, 3, 6, 7, 9,11,13,15,17,19,21,24)( 2, 4, 5, 8,10,12,14,16,18,20,22,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3,14,16)( 2, 4,13,15)( 5,23,17,11)( 6,24,18,12)( 7,10,20,21)( 8, 9,19,22)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1, 4, 6, 8, 9,12,13,16,17,20,21,23)( 2, 3, 5, 7,10,11,14,15,18,19,22,24)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 5, 9,14,17,22)( 2, 6,10,13,18,21)( 3, 8,11,16,19,23)( 4, 7,12,15,20,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,22)(10,21)(13,18)(14,17)(19,24) (20,23)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6, 9,13,17,21)( 2, 5,10,14,18,22)( 3, 7,11,15,19,24)( 4, 8,12,16,20,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7,13,19)( 2, 8,14,20)( 3, 9,15,21)( 4,10,16,22)( 5,12,18,23)( 6,11,17,24)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7,14,20)( 2, 8,13,19)( 3,18,16, 6)( 4,17,15, 5)( 9,24,22,12)(10,23,21,11)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,18)( 6,17)( 7,19)( 8,20)( 9,21)(10,22)(11,24) (12,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,17)( 6,18)( 7,20)( 8,19)( 9,22)(10,21)(11,23) (12,24)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1,15, 6,19, 9,24,13, 3,17, 7,21,11)( 2,16, 5,20,10,23,14, 4,18, 8,22,12)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1,16, 6,20, 9,23,13, 4,17, 8,21,12)( 2,15, 5,19,10,24,14, 3,18, 7,22,11)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,19,13, 7)( 2,20,14, 8)( 3,21,15, 9)( 4,22,16,10)( 5,23,18,12)( 6,24,17,11)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 14] |
| Character table: |
2 4 3 4 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3
3 1 . 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1 1
1a 2a 2b 12a 4a 12b 6a 2c 6b 4b 4c 3a 6c 2d 2e 12c 12d 4d
2P 1a 1a 1a 6b 2e 6b 3a 1a 3a 2d 2e 3a 3a 1a 1a 6b 6b 2d
3P 1a 2a 2b 4b 4c 4b 2e 2c 2d 4d 4a 1a 2b 2d 2e 4d 4d 4b
5P 1a 2a 2b 12b 4a 12a 6a 2c 6b 4b 4c 3a 6c 2d 2e 12d 12c 4d
7P 1a 2a 2b 12c 4c 12d 6a 2c 6b 4d 4a 3a 6c 2d 2e 12a 12b 4b
11P 1a 2a 2b 12d 4c 12c 6a 2c 6b 4d 4a 3a 6c 2d 2e 12b 12a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 -1 -1 -1
X.3 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 1 1 1 1 1
X.4 1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1
X.5 1 -1 1 A -A A -1 1 -1 -A A 1 1 -1 -1 -A -A A
X.6 1 -1 1 -A A -A -1 1 -1 A -A 1 1 -1 -1 A A -A
X.7 1 1 1 A A A -1 -1 -1 -A -A 1 1 -1 -1 -A -A A
X.8 1 1 1 -A -A -A -1 -1 -1 A A 1 1 -1 -1 A A -A
X.9 2 . -2 . . . -2 . 2 . . 2 -2 2 -2 . . .
X.10 2 . -2 . . . 2 . -2 . . 2 -2 -2 2 . . .
X.11 2 . 2 -1 . -1 -1 . -1 2 . -1 -1 2 2 -1 -1 2
X.12 2 . 2 1 . 1 -1 . -1 -2 . -1 -1 2 2 1 1 -2
X.13 2 . -2 B . -B 1 . -1 . . -1 1 2 -2 B -B .
X.14 2 . -2 -B . B 1 . -1 . . -1 1 2 -2 -B B .
X.15 2 . -2 C . -C -1 . 1 . . -1 1 -2 2 -C C .
X.16 2 . -2 -C . C -1 . 1 . . -1 1 -2 2 C -C .
X.17 2 . 2 A . A 1 . 1 D . -1 -1 -2 -2 -A -A -D
X.18 2 . 2 -A . -A 1 . 1 -D . -1 -1 -2 -2 A A D
A = -E(4)
= -Sqrt(-1) = -i
B = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
C = -E(12)^7+E(12)^11
= Sqrt(3) = r3
D = -2*E(4)
= -2*Sqrt(-1) = -2i
|