Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $29$ | |
Group: | $C_2\times D_{12}$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $4$ | |
Generators: | (3,12)(4,11)(5,22)(6,21)(7,8)(9,17)(10,18)(15,23)(16,24)(19,20), (1,24)(2,23)(3,21)(4,22)(5,20)(6,19)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14), (1,20,2,19)(3,9,4,10)(5,24,6,23)(7,13,8,14)(11,17,12,18)(15,21,16,22) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 3 $16$: $D_4\times C_2$ $24$: $S_3 \times C_2^2$, $D_{12}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 6: $D_{6}$ x 3
Degree 8: $D_4\times C_2$
Degree 12: $S_3 \times C_2^2$, $D_{12}$ x 2
Low degree siblings
24T29 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3,12)( 4,11)( 5,22)( 6,21)( 7, 8)( 9,17)(10,18)(15,23)(16,24)(19,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,23)( 6,24)( 7,21)( 8,22)( 9,19)(10,20)(11,17)(12,18)(13,15) (14,16)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 3,18,20, 9,11, 2, 4,17,19,10,12)( 5, 8,21,24,14,16, 6, 7,22,23,13,15)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 4,18,19, 9,12, 2, 3,17,20,10,11)( 5, 7,21,23,14,15, 6, 8,22,24,13,16)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 5, 9,14,17,22)( 2, 6,10,13,18,21)( 3, 8,11,16,19,23)( 4, 7,12,15,20,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,22)(10,21)(13,18)(14,17)(19,24) (20,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6, 9,13,17,21)( 2, 5,10,14,18,22)( 3, 7,11,15,19,24)( 4, 8,12,16,20,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,24)(10,23)(11,21)(12,22)(13,19)(14,20)(15,17) (16,18)$ |
$ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3,22, 4,21)( 5,12, 6,11)( 9,15,10,16)(13,19,14,20)(17,24,18,23)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,14,22)( 6,13,21)( 7,15,24) ( 8,16,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,17, 2, 9,18)( 3,12,19, 4,11,20)( 5,13,22, 6,14,21)( 7,16,24, 8,15,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,18)( 6,17)( 7,19)( 8,20)( 9,21)(10,22)(11,24) (12,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,17)( 6,18)( 7,20)( 8,19)( 9,22)(10,21)(11,23) (12,24)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1,15,18, 8, 9,24, 2,16,17, 7,10,23)( 3, 5,20,21,11,14, 4, 6,19,22,12,13)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1,16,18, 7, 9,23, 2,15,17, 8,10,24)( 3, 6,20,22,11,13, 4, 5,19,21,12,14)$ |
$ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,19, 2,20)( 3,10, 4, 9)( 5,23, 6,24)( 7,14, 8,13)(11,18,12,17)(15,22,16,21)$ |
Group invariants
Order: | $48=2^{4} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [48, 36] |
Character table: |
2 4 3 4 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 1 . 1 . 1 1 1 . 1 . 1 1 1 1 1 1 1 1 1a 2a 2b 2c 12a 12b 6a 2d 6b 2e 4a 3a 6c 2f 2g 12c 12d 4b 2P 1a 1a 1a 1a 6c 6c 3a 1a 3a 1a 2b 3a 3a 1a 1a 6c 6c 2b 3P 1a 2a 2b 2c 4b 4b 2g 2d 2f 2e 4a 1a 2b 2f 2g 4a 4a 4b 5P 1a 2a 2b 2c 12b 12a 6a 2d 6b 2e 4a 3a 6c 2f 2g 12d 12c 4b 7P 1a 2a 2b 2c 12b 12a 6a 2d 6b 2e 4a 3a 6c 2f 2g 12d 12c 4b 11P 1a 2a 2b 2c 12a 12b 6a 2d 6b 2e 4a 3a 6c 2f 2g 12c 12d 4b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 X.3 1 -1 1 -1 1 1 1 -1 1 -1 1 1 1 1 1 1 1 1 X.4 1 -1 1 1 -1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 1 -1 X.5 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 X.6 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 X.7 1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 X.8 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 X.9 2 . -2 . . . -2 . 2 . . 2 -2 2 -2 . . . X.10 2 . -2 . . . 2 . -2 . . 2 -2 -2 2 . . . X.11 2 . 2 . -1 -1 -1 . -1 . 2 -1 -1 2 2 -1 -1 2 X.12 2 . 2 . -1 -1 1 . 1 . -2 -1 -1 -2 -2 1 1 2 X.13 2 . 2 . 1 1 -1 . -1 . -2 -1 -1 2 2 1 1 -2 X.14 2 . 2 . 1 1 1 . 1 . 2 -1 -1 -2 -2 -1 -1 -2 X.15 2 . -2 . A -A -1 . 1 . . -1 1 -2 2 -A A . X.16 2 . -2 . -A A -1 . 1 . . -1 1 -2 2 A -A . X.17 2 . -2 . A -A 1 . -1 . . -1 1 2 -2 A -A . X.18 2 . -2 . -A A 1 . -1 . . -1 1 2 -2 -A A . A = -E(12)^7+E(12)^11 = Sqrt(3) = r3 |