Properties

Label 24T284
Degree $24$
Order $168$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $\PSL(2,7)$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(24, 284);
 

Group action invariants

Degree $n$:  $24$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $284$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $\PSL(2,7)$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $3$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,8,24,21,17,10,13)(2,9,22,19,18,11,14)(3,7,23,20,16,12,15), (1,7,12,13,22,5,18)(2,8,10,14,23,6,16)(3,9,11,15,24,4,17)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 4: None

Degree 6: None

Degree 8: $\PSL(2,7)$

Degree 12: None

Low degree siblings

7T5 x 2, 8T37, 14T10 x 2, 21T14, 28T32, 42T37, 42T38 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{24}$ $1$ $1$ $0$ $()$
2A $2^{12}$ $21$ $2$ $12$ $( 1, 9)( 2, 7)( 3, 8)( 4,21)( 5,19)( 6,20)(10,15)(11,13)(12,14)(16,23)(17,24)(18,22)$
3A $3^{8}$ $56$ $3$ $16$ $( 1,14, 9)( 2,15, 7)( 3,13, 8)( 4,12,23)( 5,10,24)( 6,11,22)(16,17,18)(19,21,20)$
4A $4^{6}$ $42$ $4$ $18$ $( 1,13, 9,11)( 2,14, 7,12)( 3,15, 8,10)( 4,23,21,16)( 5,24,19,17)( 6,22,20,18)$
7A1 $7^{3},1^{3}$ $24$ $7$ $18$ $( 1,22, 6, 9,21,15,16)( 2,23, 4, 7,19,13,17)( 3,24, 5, 8,20,14,18)$
7A-1 $7^{3},1^{3}$ $24$ $7$ $18$ $( 1,15, 9,22,16,21, 6)( 2,13, 7,23,17,19, 4)( 3,14, 8,24,18,20, 5)$

Malle's constant $a(G)$:     $1/12$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $168=2^{3} \cdot 3 \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  168.42
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 4A 7A1 7A-1
Size 1 21 56 42 24 24
2 P 1A 1A 3A 2A 7A1 7A-1
3 P 1A 2A 1A 4A 7A-1 7A1
7 P 1A 2A 3A 4A 1A 1A
Type
168.42.1a R 1 1 1 1 1 1
168.42.3a1 C 3 1 0 1 ζ731ζ7ζ72 ζ73+ζ7+ζ72
168.42.3a2 C 3 1 0 1 ζ73+ζ7+ζ72 ζ731ζ7ζ72
168.42.6a R 6 2 0 0 1 1
168.42.7a R 7 1 1 1 0 0
168.42.8a R 8 0 1 0 1 1

magma: CharacterTable(G);