Show commands:
Magma
magma: G := TransitiveGroup(24, 284);
Group action invariants
Degree $n$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $284$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,7)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $3$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,8,24,21,17,10,13)(2,9,22,19,18,11,14)(3,7,23,20,16,12,15), (1,7,12,13,22,5,18)(2,8,10,14,23,6,16)(3,9,11,15,24,4,17) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 8: $\PSL(2,7)$
Degree 12: None
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 21T14, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $21$ | $2$ | $12$ | $( 1, 9)( 2, 7)( 3, 8)( 4,21)( 5,19)( 6,20)(10,15)(11,13)(12,14)(16,23)(17,24)(18,22)$ |
3A | $3^{8}$ | $56$ | $3$ | $16$ | $( 1,14, 9)( 2,15, 7)( 3,13, 8)( 4,12,23)( 5,10,24)( 6,11,22)(16,17,18)(19,21,20)$ |
4A | $4^{6}$ | $42$ | $4$ | $18$ | $( 1,13, 9,11)( 2,14, 7,12)( 3,15, 8,10)( 4,23,21,16)( 5,24,19,17)( 6,22,20,18)$ |
7A1 | $7^{3},1^{3}$ | $24$ | $7$ | $18$ | $( 1,22, 6, 9,21,15,16)( 2,23, 4, 7,19,13,17)( 3,24, 5, 8,20,14,18)$ |
7A-1 | $7^{3},1^{3}$ | $24$ | $7$ | $18$ | $( 1,15, 9,22,16,21, 6)( 2,13, 7,23,17,19, 4)( 3,14, 8,24,18,20, 5)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $168=2^{3} \cdot 3 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 168.42 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A | 7A1 | 7A-1 | ||
Size | 1 | 21 | 56 | 42 | 24 | 24 | |
2 P | 1A | 1A | 3A | 2A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 4A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 4A | 1A | 1A | |
Type | |||||||
168.42.1a | R | ||||||
168.42.3a1 | C | ||||||
168.42.3a2 | C | ||||||
168.42.6a | R | ||||||
168.42.7a | R | ||||||
168.42.8a | R |
magma: CharacterTable(G);