Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $284$ | |
| Group : | $\PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8,24,21,17,10,13)(2,9,22,19,18,11,14)(3,7,23,20,16,12,15), (1,7,12,13,22,5,18)(2,8,10,14,23,6,16)(3,9,11,15,24,4,17) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 8: $\PSL(2,7)$
Degree 12: None
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 21T14, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 7, 7, 1, 1, 1 $ | $24$ | $7$ | $( 4, 8,16,11,22,20,13)( 5, 9,17,12,23,21,14)( 6, 7,18,10,24,19,15)$ |
| $ 7, 7, 7, 1, 1, 1 $ | $24$ | $7$ | $( 4,11,13,16,20, 8,22)( 5,12,14,17,21, 9,23)( 6,10,15,18,19, 7,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 2, 3)( 4, 6, 5)( 7,17,22)( 8,18,23)( 9,16,24)(10,14,20)(11,15,21) (12,13,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,15)( 8,13)( 9,14)(10,16)(11,17)(12,18)(19,23)(20,24) (21,22)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $42$ | $4$ | $( 1, 4,17,22)( 2, 5,18,23)( 3, 6,16,24)( 7,20,13,10)( 8,21,14,11)( 9,19,15,12)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [168, 42] |
| Character table: |
2 3 . . . 3 2
3 1 . . 1 . .
7 1 1 1 . . .
1a 7a 7b 3a 2a 4a
2P 1a 7a 7b 3a 1a 2a
3P 1a 7b 7a 1a 2a 4a
5P 1a 7b 7a 3a 2a 4a
7P 1a 1a 1a 3a 2a 4a
X.1 1 1 1 1 1 1
X.2 3 A /A . -1 1
X.3 3 /A A . -1 1
X.4 6 -1 -1 . 2 .
X.5 7 . . 1 -1 -1
X.6 8 1 1 -1 . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|