Show commands: Magma
Group invariants
| Abstract group: | $A_4\wr C_2\times C_4$ |
| |
| Order: | $1152=2^{7} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $2691$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,8,12,4,5,10,2,7,11,3,6,9)(13,15,14,16)(17,20,18,19)(21,23,22,24)$, $(1,14,6,20,12,24,2,13,5,19,11,23)(3,16,7,18,9,21,4,15,8,17,10,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$, $C_6$ x 3 $8$: $C_4\times C_2$ $12$: $D_{6}$, $C_{12}$ x 2, $C_6\times C_2$ $18$: $S_3\times C_3$ $24$: $S_3 \times C_4$, 24T2 $36$: $C_6\times S_3$ $72$: 24T65 $288$: $A_4\wr C_2$ $576$: 12T158 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3\times C_3$
Degree 8: None
Degree 12: $C_6\times S_3$
Low degree siblings
32T96703, 36T1634 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
56 x 56 character table
Regular extensions
Data not computed