Show commands: Magma
Group invariants
| Abstract group: | $C_{12}^2:D_4$ |
| |
| Order: | $1152=2^{7} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $2680$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(1,19,5,24,4,21,2,20,6,23,3,22)(7,13,11,17,10,16,8,14,12,18,9,15)$, $(1,18,10,22,2,17,9,21)(3,14,11,23,4,13,12,24)(5,15,8,19,6,16,7,20)$, $(1,9)(2,10)(3,12)(4,11)(5,7)(6,8)(13,15,18,14,16,17)(19,22,23,20,21,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $S_3$, $C_6$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $12$: $D_{6}$ x 3, $C_6\times C_2$ x 7 $16$: $D_4\times C_2$ x 3 $18$: $S_3\times C_3$ $24$: $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 6, $D_4 \times C_3$ x 6, 24T3 $32$: $C_2^2 \wr C_2$ $36$: $C_6\times S_3$ x 3 $48$: 24T25 x 3, 24T38 x 3 $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ $72$: 12T42 x 6, 24T68 $96$: 24T112, 24T116 $128$: $C_2 \wr C_2\wr C_2$ $144$: 24T248 x 3 $192$: 24T286, 24T334 $288$: 24T626 $384$: 24T713, 24T714 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $S_3\times C_3$
Degree 8: $C_2 \wr C_2\wr C_2$
Degree 12: 12T42
Low degree siblings
24T2680 x 15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
135 x 135 character table
Regular extensions
Data not computed