Properties

Label 24T2680
24T2680 1 9 1->9 18 1->18 19 1->19 2 10 2->10 17 2->17 20 2->20 3 12 3->12 14 3->14 22 3->22 4 11 4->11 13 4->13 21 4->21 5 7 5->7 15 5->15 24 5->24 6 8 6->8 16 6->16 23 6->23 7->13 7->20 8->14 8->19 9->15 9->21 10->16 10->22 11->17 11->23 12->18 12->24 13->11 13->12 13->15 14->11 14->12 14->16 15->7 15->8 15->18 16->7 16->8 16->17 17->9 17->10 17->13 18->9 18->10 18->14 19->5 19->6 19->22 20->5 20->6 20->21 21->1 21->2 21->24 22->1 22->2 22->23 23->3 23->4 23->20 24->3 24->4 24->19
Degree $24$
Order $1152$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{12}^2:D_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 2680);
 

Group invariants

Abstract group:  $C_{12}^2:D_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $1152=2^{7} \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2680$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $6$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,19,5,24,4,21,2,20,6,23,3,22)(7,13,11,17,10,16,8,14,12,18,9,15)$, $(1,18,10,22,2,17,9,21)(3,14,11,23,4,13,12,24)(5,15,8,19,6,16,7,20)$, $(1,9)(2,10)(3,12)(4,11)(5,7)(6,8)(13,15,18,14,16,17)(19,22,23,20,21,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$3$:  $C_3$
$4$:  $C_2^2$ x 7
$6$:  $S_3$, $C_6$ x 7
$8$:  $D_{4}$ x 6, $C_2^3$
$12$:  $D_{6}$ x 3, $C_6\times C_2$ x 7
$16$:  $D_4\times C_2$ x 3
$18$:  $S_3\times C_3$
$24$:  $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 6, $D_4 \times C_3$ x 6, 24T3
$32$:  $C_2^2 \wr C_2$
$36$:  $C_6\times S_3$ x 3
$48$:  24T25 x 3, 24T38 x 3
$64$:  $(((C_4 \times C_2): C_2):C_2):C_2$
$72$:  12T42 x 6, 24T68
$96$:  24T112, 24T116
$128$:  $C_2 \wr C_2\wr C_2$
$144$:  24T248 x 3
$192$:  24T286, 24T334
$288$:  24T626
$384$:  24T713, 24T714

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $D_{4}$

Degree 6: $S_3\times C_3$

Degree 8: $C_2 \wr C_2\wr C_2$

Degree 12: 12T42

Low degree siblings

24T2680 x 15

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

135 x 135 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed