Properties

Label 24T25000
Degree $24$
Order $6.204\times 10^{23}$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $S_{24}$

Related objects

Learn more about

Group action invariants

Degree $n$:  $24$
Transitive number $t$:  $25000$
Group:  $S_{24}$
Parity:  $-1$
Primitive:  yes
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,2)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 4: None

Degree 6: None

Degree 8: None

Degree 12: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 1,575 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $620448401733239439360000=2^{22} \cdot 3^{10} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23$
Cyclic:  no
Abelian:  no
Solvable:  no
GAP id:  not available
Character table: not available.