Show commands:
Magma
magma: G := TransitiveGroup(24, 25000);
Group action invariants
Degree $n$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $25000$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_{24}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,2) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 8: None
Degree 12: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
There are 1,575 conjugacy classes of elements. Data not shown.
magma: ConjugacyClasses(G);
Group invariants
Order: | $620448401733239439360000=2^{22} \cdot 3^{10} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 620448401733239439360000.a | magma: IdentifyGroup(G);
|
Character table: not available. |
magma: CharacterTable(G);