Show commands: Magma
Group invariants
| Abstract group: | $D_{12}:C_2$ |
| |
| Order: | $48=2^{4} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $24$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,20)(2,19)(3,18)(4,17)(5,15)(6,16)(7,14)(8,13)(9,12)(10,11)(21,23)(22,24)$, $(1,16,17,8,9,23)(2,15,18,7,10,24)(3,6,19,21,11,13)(4,5,20,22,12,14)$, $(1,21,18,14,9,6,2,22,17,13,10,5)(3,24,20,16,11,7,4,23,19,15,12,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $16$: $Q_8:C_2$ $24$: $S_3 \times C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 6: $D_{6}$ x 3
Degree 8: $Q_8:C_2$
Degree 12: $S_3 \times C_2^2$
Low degree siblings
24T19, 24T24Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| 2B | $2^{12}$ | $2$ | $2$ | $12$ | $( 1, 8)( 2, 7)( 3,21)( 4,22)( 5,12)( 6,11)( 9,16)(10,15)(13,19)(14,20)(17,23)(18,24)$ |
| 2C | $2^{10},1^{4}$ | $6$ | $2$ | $10$ | $( 3,12)( 4,11)( 5,22)( 6,21)( 7, 8)( 9,17)(10,18)(15,23)(16,24)(19,20)$ |
| 2D | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,24)(14,23)(15,21)(16,22)(17,19)(18,20)$ |
| 3A | $3^{8}$ | $2$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,19,11)( 4,20,12)( 5,22,14)( 6,21,13)( 7,24,15)( 8,23,16)$ |
| 4A1 | $4^{6}$ | $1$ | $4$ | $18$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,17, 6,18)( 7,20, 8,19)( 9,21,10,22)(11,24,12,23)$ |
| 4A-1 | $4^{6}$ | $1$ | $4$ | $18$ | $( 1,14, 2,13)( 3,16, 4,15)( 5,18, 6,17)( 7,19, 8,20)( 9,22,10,21)(11,23,12,24)$ |
| 4B | $4^{6}$ | $2$ | $4$ | $18$ | $( 1,19, 2,20)( 3,10, 4, 9)( 5,23, 6,24)( 7,14, 8,13)(11,18,12,17)(15,22,16,21)$ |
| 4C | $4^{6}$ | $6$ | $4$ | $18$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,24,10,23)(11,21,12,22)(13,20,14,19)(15,18,16,17)$ |
| 4D | $4^{6}$ | $6$ | $4$ | $18$ | $( 1, 5, 2, 6)( 3,15, 4,16)( 7,12, 8,11)( 9,22,10,21)(13,17,14,18)(19,24,20,23)$ |
| 6A | $6^{4}$ | $2$ | $6$ | $20$ | $( 1,18, 9, 2,17,10)( 3,20,11, 4,19,12)( 5,21,14, 6,22,13)( 7,23,15, 8,24,16)$ |
| 6B1 | $6^{4}$ | $2$ | $6$ | $20$ | $( 1,16,17, 8, 9,23)( 2,15,18, 7,10,24)( 3, 6,19,21,11,13)( 4, 5,20,22,12,14)$ |
| 6B-1 | $6^{4}$ | $2$ | $6$ | $20$ | $( 1,23, 9, 8,17,16)( 2,24,10, 7,18,15)( 3,13,11,21,19, 6)( 4,14,12,22,20, 5)$ |
| 12A1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1,22,18,13, 9, 5, 2,21,17,14,10, 6)( 3,23,20,15,11, 8, 4,24,19,16,12, 7)$ |
| 12A-1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1, 6,10,14,17,21, 2, 5, 9,13,18,22)( 3, 7,12,16,19,24, 4, 8,11,15,20,23)$ |
| 12B1 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1, 4,18,19, 9,12, 2, 3,17,20,10,11)( 5, 7,21,23,14,15, 6, 8,22,24,13,16)$ |
| 12B5 | $12^{2}$ | $2$ | $12$ | $22$ | $( 1,12,10,19,17, 4, 2,11, 9,20,18, 3)( 5,15,13,23,22, 7, 6,16,14,24,21, 8)$ |
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 2B | 2C | 2D | 3A | 4A1 | 4A-1 | 4B | 4C | 4D | 6A | 6B1 | 6B-1 | 12A1 | 12A-1 | 12B1 | 12B5 | ||
| Size | 1 | 1 | 2 | 6 | 6 | 2 | 1 | 1 | 2 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2A | 2A | 2A | 3A | 3A | 3A | 6A | 6A | 6A | 6A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 1A | 4A-1 | 4A1 | 4B | 4C | 4D | 2A | 2B | 2B | 4A1 | 4A-1 | 4B | 4B | |
| Type | |||||||||||||||||||
| 48.37.1a | R | ||||||||||||||||||
| 48.37.1b | R | ||||||||||||||||||
| 48.37.1c | R | ||||||||||||||||||
| 48.37.1d | R | ||||||||||||||||||
| 48.37.1e | R | ||||||||||||||||||
| 48.37.1f | R | ||||||||||||||||||
| 48.37.1g | R | ||||||||||||||||||
| 48.37.1h | R | ||||||||||||||||||
| 48.37.2a | R | ||||||||||||||||||
| 48.37.2b | R | ||||||||||||||||||
| 48.37.2c | R | ||||||||||||||||||
| 48.37.2d | R | ||||||||||||||||||
| 48.37.2e1 | C | ||||||||||||||||||
| 48.37.2e2 | C | ||||||||||||||||||
| 48.37.2f1 | C | ||||||||||||||||||
| 48.37.2f2 | C | ||||||||||||||||||
| 48.37.2f3 | C | ||||||||||||||||||
| 48.37.2f4 | C |
Regular extensions
Data not computed