Show commands:
Magma
magma: G := TransitiveGroup(24, 202);
Group action invariants
Degree $n$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $202$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,4)(5,9)(6,10)(7,13)(8,14)(11,19)(12,20)(15,17)(16,18)(21,23)(22,24), (3,17,11,7,5)(4,18,12,8,6)(9,14,22,20,15)(10,13,21,19,16) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $\PGL(2,5)$
Degree 8: None
Degree 12: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 5, 5, 1, 1, 1, 1 $ | $24$ | $5$ | $( 3, 5, 7,11,17)( 4, 6, 8,12,18)( 9,15,20,22,14)(10,16,19,21,13)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7,12)( 8,11)( 9,16)(10,15)(13,20)(14,19)(21,22) (23,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 3)( 2, 4)( 5, 9)( 6,10)( 7,13)( 8,14)(11,19)(12,20)(15,17)(16,18)(21,23) (22,24)$ |
$ 4, 4, 4, 4, 4, 4 $ | $30$ | $4$ | $( 1, 3, 9,17)( 2, 4,10,18)( 5,13, 6,14)( 7,19,23,21)( 8,20,24,22)(11,15,12,16)$ |
$ 6, 6, 6, 6 $ | $20$ | $6$ | $( 1, 3,13,18,10,11)( 2, 4,14,17, 9,12)( 5,19, 7,15,24,22)( 6,20, 8,16,23,21)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 9,20)( 2,10,19)( 3,12, 5)( 4,11, 6)( 7,17,23)( 8,18,24)(13,21,15) (14,22,16)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 120.34 | magma: IdentifyGroup(G);
|
Character table: |
2 3 . 3 2 2 1 1 3 1 . . 1 . 1 1 5 1 1 . . . . . 1a 5a 2a 2b 4a 6a 3a 2P 1a 5a 1a 1a 2a 3a 3a 3P 1a 5a 2a 2b 4a 2b 1a 5P 1a 1a 2a 2b 4a 6a 3a X.1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 -1 1 X.3 4 -1 . -2 . 1 1 X.4 4 -1 . 2 . -1 1 X.5 5 . 1 1 -1 1 -1 X.6 5 . 1 -1 1 -1 -1 X.7 6 1 -2 . . . . |
magma: CharacterTable(G);