Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $20$ | |
Group: | $C_3:OD_{16}$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $12$ | |
Generators: | (1,24,7,18,2,23,8,17)(3,22,10,15,4,21,9,16)(5,19,11,14,6,20,12,13), (1,12,9,7,5,3,2,11,10,8,6,4)(13,24,21,20,17,15,14,23,22,19,18,16) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$, $C_3 : C_4$ x 2 $16$: $C_8:C_2$ $24$: 24T6 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $C_4$
Degree 6: $S_3$
Degree 8: $C_8:C_2$
Degree 12: $C_3 : C_4$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 3, 6, 7,10,12, 2, 4, 5, 8, 9,11)(13,15,18,20,22,24,14,16,17,19,21,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 3, 6, 7,10,12, 2, 4, 5, 8, 9,11)(13,16,18,19,22,23,14,15,17,20,21,24)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 4, 6, 8,10,11, 2, 3, 5, 7, 9,12)(13,15,18,20,22,24,14,16,17,19,21,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 4, 6, 8,10,11, 2, 3, 5, 7, 9,12)(13,16,18,19,22,23,14,15,17,20,21,24)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5,10)( 2, 6, 9)( 3, 8,12)( 4, 7,11)(13,17,22)(14,18,21)(15,19,24) (16,20,23)$ |
$ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 5,10)( 2, 6, 9)( 3, 8,12)( 4, 7,11)(13,18,22,14,17,21)(15,20,24,16,19,23)$ |
$ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 6,10, 2, 5, 9)( 3, 7,12, 4, 8,11)(13,17,22)(14,18,21)(15,19,24)(16,20,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6,10, 2, 5, 9)( 3, 7,12, 4, 8,11)(13,18,22,14,17,21)(15,20,24,16,19,23)$ |
$ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,11, 6,12)(13,19,14,20)(15,21,16,22)(17,24,18,23)$ |
$ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,11, 6,12)(13,20,14,19)(15,22,16,21)(17,23,18,24)$ |
$ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 8, 2, 7)( 3, 9, 4,10)( 5,12, 6,11)(13,20,14,19)(15,22,16,21)(17,23,18,24)$ |
$ 8, 8, 8 $ | $6$ | $8$ | $( 1,13, 7,19, 2,14, 8,20)( 3,23,10,17, 4,24, 9,18)( 5,22,11,15, 6,21,12,16)$ |
$ 8, 8, 8 $ | $6$ | $8$ | $( 1,13, 8,20, 2,14, 7,19)( 3,23, 9,18, 4,24,10,17)( 5,22,12,16, 6,21,11,15)$ |
$ 8, 8, 8 $ | $6$ | $8$ | $( 1,15, 8,22, 2,16, 7,21)( 3,13, 9,20, 4,14,10,19)( 5,24,12,17, 6,23,11,18)$ |
$ 8, 8, 8 $ | $6$ | $8$ | $( 1,15, 7,21, 2,16, 8,22)( 3,13,10,19, 4,14, 9,20)( 5,24,11,18, 6,23,12,17)$ |
Group invariants
Order: | $48=2^{4} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [48, 10] |
Character table: |
2 4 3 4 3 3 3 3 3 3 3 3 4 3 4 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . 1a 2a 2b 12a 12b 12c 12d 3a 6a 6b 6c 4a 4b 4c 8a 8b 8c 8d 2P 1a 1a 1a 6c 6c 6c 6c 3a 3a 3a 3a 2b 2b 2b 4a 4c 4c 4a 3P 1a 2a 2b 4b 4a 4c 4b 1a 2a 2a 2b 4c 4b 4a 8c 8d 8a 8b 5P 1a 2a 2b 12d 12b 12c 12a 3a 6b 6a 6c 4a 4b 4c 8a 8b 8c 8d 7P 1a 2a 2b 12d 12c 12b 12a 3a 6a 6b 6c 4c 4b 4a 8c 8d 8a 8b 11P 1a 2a 2b 12a 12c 12b 12d 3a 6b 6a 6c 4c 4b 4a 8c 8d 8a 8b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 X.3 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 X.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 X.5 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 C -C -C C X.6 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -C C C -C X.7 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 C C -C -C X.8 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -C -C C C X.9 2 -2 2 -1 1 1 -1 -1 1 1 -1 -2 2 -2 . . . . X.10 2 -2 2 1 -1 -1 1 -1 1 1 -1 2 -2 2 . . . . X.11 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 . . . . X.12 2 2 2 1 1 1 1 -1 -1 -1 -1 -2 -2 -2 . . . . X.13 2 . -2 . B -B . 2 . . -2 -B . B . . . . X.14 2 . -2 . -B B . 2 . . -2 B . -B . . . . X.15 2 . -2 A C -C -A -1 D -D 1 -B . B . . . . X.16 2 . -2 A -C C -A -1 -D D 1 B . -B . . . . X.17 2 . -2 -A C -C A -1 -D D 1 -B . B . . . . X.18 2 . -2 -A -C C A -1 D -D 1 B . -B . . . . A = -E(12)^7+E(12)^11 = Sqrt(3) = r3 B = 2*E(4) = 2*Sqrt(-1) = 2i C = -E(4) = -Sqrt(-1) = -i D = E(3)-E(3)^2 = Sqrt(-3) = i3 |