Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $19$ | |
Group: | $D_{12}:C_2$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $12$ | |
Generators: | (1,24,2,23)(3,18,4,17)(5,19,6,20)(7,13,8,14)(9,15,10,16)(11,22,12,21), (1,12,2,11)(3,5,4,6)(7,9,8,10)(13,15,14,16)(17,20,18,19)(21,23,22,24), (1,19)(2,20)(3,13)(4,14)(5,15)(6,16)(7,22)(8,21)(9,24)(10,23)(11,18)(12,17) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $16$: $Q_8:C_2$ $24$: $S_3 \times C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Degree 12: $D_6$
Low degree siblings
24T24 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 3,10,12, 5, 7, 2, 4, 9,11, 6, 8)(13,19,21,16,18,24,14,20,22,15,17,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 3,10,12, 5, 7, 2, 4, 9,11, 6, 8)(13,20,21,15,18,23,14,19,22,16,17,24)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 4,10,11, 5, 8, 2, 3, 9,12, 6, 7)(13,19,21,16,18,24,14,20,22,15,17,23)$ |
$ 12, 12 $ | $2$ | $12$ | $( 1, 4,10,11, 5, 8, 2, 3, 9,12, 6, 7)(13,20,21,15,18,23,14,19,22,16,17,24)$ |
$ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,22,14,18,21)(15,20,24,16,19,23)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,18,22)(14,17,21)(15,19,24) (16,20,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3, 8,11, 4, 7,12)(13,17,22,14,18,21)(15,20,24,16,19,23)$ |
$ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3, 8,11, 4, 7,12)(13,18,22)(14,17,21)(15,19,24)(16,20,23)$ |
$ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11, 2,12)( 3, 6, 4, 5)( 7,10, 8, 9)(13,15,14,16)(17,20,18,19)(21,23,22,24)$ |
$ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,11, 2,12)( 3, 6, 4, 5)( 7,10, 8, 9)(13,16,14,15)(17,19,18,20)(21,24,22,23)$ |
$ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,12, 2,11)( 3, 5, 4, 6)( 7, 9, 8,10)(13,15,14,16)(17,20,18,19)(21,23,22,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1,13)( 2,14)( 3,23)( 4,24)( 5,22)( 6,21)( 7,20)( 8,19)( 9,18)(10,17)(11,16) (12,15)$ |
$ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1,13, 2,14)( 3,23, 4,24)( 5,22, 6,21)( 7,20, 8,19)( 9,18,10,17)(11,16,12,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1,15)( 2,16)( 3,22)( 4,21)( 5,24)( 6,23)( 7,18)( 8,17)( 9,19)(10,20)(11,13) (12,14)$ |
$ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1,15, 2,16)( 3,22, 4,21)( 5,24, 6,23)( 7,18, 8,17)( 9,19,10,20)(11,13,12,14)$ |
Group invariants
Order: | $48=2^{4} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [48, 37] |
Character table: |
2 4 3 4 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . 1a 2a 2b 12a 12b 12c 12d 6a 3a 6b 6c 4a 4b 4c 2c 4d 2d 4e 2P 1a 1a 1a 6b 6b 6b 6b 3a 3a 3a 3a 2b 2b 2b 1a 2b 1a 2b 3P 1a 2a 2b 4a 4c 4b 4a 2a 1a 2b 2a 4a 4c 4b 2c 4d 2d 4e 5P 1a 2a 2b 12d 12b 12c 12a 6c 3a 6b 6a 4a 4b 4c 2c 4d 2d 4e 7P 1a 2a 2b 12d 12c 12b 12a 6a 3a 6b 6c 4a 4c 4b 2c 4d 2d 4e 11P 1a 2a 2b 12a 12c 12b 12d 6c 3a 6b 6a 4a 4c 4b 2c 4d 2d 4e X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 X.3 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 X.4 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 X.5 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 X.6 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 1 X.7 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1 -1 -1 X.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 X.9 2 -2 2 -1 1 1 -1 1 -1 -1 1 2 -2 -2 . . . . X.10 2 -2 2 1 -1 -1 1 1 -1 -1 1 -2 2 2 . . . . X.11 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 . . . . X.12 2 2 2 1 1 1 1 -1 -1 -1 -1 -2 -2 -2 . . . . X.13 2 . -2 . B -B . . 2 -2 . . B -B . . . . X.14 2 . -2 . -B B . . 2 -2 . . -B B . . . . X.15 2 . -2 A C -C -A D -1 1 -D . -B B . . . . X.16 2 . -2 A -C C -A -D -1 1 D . B -B . . . . X.17 2 . -2 -A C -C A -D -1 1 D . -B B . . . . X.18 2 . -2 -A -C C A D -1 1 -D . B -B . . . . A = -E(12)^7+E(12)^11 = Sqrt(3) = r3 B = -2*E(4) = -2*Sqrt(-1) = -2i C = -E(4) = -Sqrt(-1) = -i D = -E(3)+E(3)^2 = -Sqrt(-3) = -i3 |