Group action invariants
Degree $n$: | $24$ | |
Transitive number $t$: | $18$ | |
Group: | $D_4:S_3$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $12$ | |
Generators: | (1,6,10,2,5,9)(3,7,12,4,8,11)(13,17,22)(14,18,21)(15,19,24)(16,20,23), (1,11,2,12)(3,10,4,9)(5,7,6,8)(13,20,14,19)(15,17,16,18)(21,24,22,23), (1,14,2,13)(3,23,4,24)(5,21,6,22)(7,19,8,20)(9,17,10,18)(11,15,12,16) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $16$: $Q_8:C_2$ $24$: $S_3 \times C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Degree 12: $D_6$
Low degree siblings
24T18, 24T23Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
$ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7,10, 8, 9)(13,23,14,24)(15,22,16,21)(17,20,18,19)$ |
$ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7,10, 8, 9)(13,24,14,23)(15,21,16,22)(17,19,18,20)$ |
$ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 4, 2, 3)( 5,11, 6,12)( 7, 9, 8,10)(13,23,14,24)(15,22,16,21)(17,20,18,19)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5,10)( 2, 6, 9)( 3, 8,12)( 4, 7,11)(13,17,22)(14,18,21)(15,19,24) (16,20,23)$ |
$ 6, 6, 3, 3, 3, 3 $ | $4$ | $6$ | $( 1, 5,10)( 2, 6, 9)( 3, 8,12)( 4, 7,11)(13,18,22,14,17,21)(15,20,24,16,19,23)$ |
$ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6,10, 2, 5, 9)( 3, 7,12, 4, 8,11)(13,18,22,14,17,21)(15,20,24,16,19,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1,13)( 2,14)( 3,24)( 4,23)( 5,22)( 6,21)( 7,20)( 8,19)( 9,18)(10,17)(11,16) (12,15)$ |
$ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1,13, 2,14)( 3,24, 4,23)( 5,22, 6,21)( 7,20, 8,19)( 9,18,10,17)(11,16,12,15)$ |
$ 6, 6, 6, 6 $ | $4$ | $6$ | $( 1,15,10,24, 5,19)( 2,16, 9,23, 6,20)( 3,18,12,14, 8,21)( 4,17,11,13, 7,22)$ |
$ 12, 12 $ | $4$ | $12$ | $( 1,15, 9,23, 5,19, 2,16,10,24, 6,20)( 3,18,11,13, 8,21, 4,17,12,14, 7,22)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,23)( 2,24)( 3,13)( 4,14)( 5,16)( 6,15)( 7,18)( 8,17)( 9,19)(10,20)(11,21) (12,22)$ |
$ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,23, 2,24)( 3,13, 4,14)( 5,16, 6,15)( 7,18, 8,17)( 9,19,10,20)(11,21,12,22)$ |
Group invariants
Order: | $48=2^{4} \cdot 3$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [48, 39] |
Character table: |
2 4 3 4 3 4 4 3 2 3 3 3 2 2 3 3 3 1 1 1 . . . 1 1 1 . . 1 1 1 1 1a 2a 2b 4a 4b 4c 3a 6a 6b 2c 4d 6c 12a 2d 4e 2P 1a 1a 1a 2b 2b 2b 3a 3a 3a 1a 2b 3a 6b 1a 2b 3P 1a 2a 2b 4a 4c 4b 1a 2a 2b 2c 4d 2d 4e 2d 4e 5P 1a 2a 2b 4a 4b 4c 3a 6a 6b 2c 4d 6c 12a 2d 4e 7P 1a 2a 2b 4a 4c 4b 3a 6a 6b 2c 4d 6c 12a 2d 4e 11P 1a 2a 2b 4a 4c 4b 3a 6a 6b 2c 4d 6c 12a 2d 4e X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 1 -1 1 -1 1 1 -1 1 -1 X.3 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 1 -1 1 X.4 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 X.5 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 X.6 1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 X.7 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 X.9 2 -2 2 . . . -1 1 -1 . . -1 1 2 -2 X.10 2 -2 2 . . . -1 1 -1 . . 1 -1 -2 2 X.11 2 2 2 . . . -1 -1 -1 . . -1 -1 2 2 X.12 2 2 2 . . . -1 -1 -1 . . 1 1 -2 -2 X.13 2 . -2 . A -A 2 . -2 . . . . . . X.14 2 . -2 . -A A 2 . -2 . . . . . . X.15 4 . -4 . . . -2 . 2 . . . . . . A = -2*E(4) = -2*Sqrt(-1) = -2i |