Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $C_3\times D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,17,9,2,18,10)(3,8,12,15,20,24)(4,7,11,16,19,23)(5,21,14,6,22,13), (1,24,9,8,18,15)(2,23,10,7,17,16)(3,13,12,21,20,6)(4,14,11,22,19,5) | |
| $|\Aut(F/K)|$: | $24$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 8: $D_{4}$ 12: $C_6\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $C_3$
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 6: $C_6$ x 3
Degree 8: $D_4$
Degree 12: $C_6\times C_2$, $D_4 \times C_3$ x 2
Low degree siblings
12T14 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,15)( 4,16)( 5, 6)( 7,19)( 8,20)( 9,10)(11,23)(12,24)(13,14)(17,18) (21,22)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1, 3, 5, 7, 9,12,14,16,18,20,22,23)( 2, 4, 6, 8,10,11,13,15,17,19,21,24)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 4,18,19, 9,11)( 2, 3,17,20,10,12)( 5, 8,22,24,14,15)( 6, 7,21,23,13,16)$ |
| $ 6, 6, 6, 6 $ | $1$ | $6$ | $( 1, 5, 9,14,18,22)( 2, 6,10,13,17,21)( 3, 7,12,16,20,23)( 4, 8,11,15,19,24)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6, 9,13,18,21)( 2, 5,10,14,17,22)( 3,19,12, 4,20,11)( 7,24,16, 8,23,15)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7,14,20)( 2, 8,13,19)( 3, 9,16,22)( 4,10,15,21)( 5,12,18,23)( 6,11,17,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 8)( 2, 7)( 3,21)( 4,22)( 5,11)( 6,12)( 9,15)(10,16)(13,20)(14,19)(17,23) (18,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9,18)( 2,10,17)( 3,12,20)( 4,11,19)( 5,14,22)( 6,13,21)( 7,16,23) ( 8,15,24)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,10,18, 2, 9,17)( 3,24,20,15,12, 8)( 4,23,19,16,11, 7)( 5,13,22, 6,14,21)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,11, 9,19,18, 4)( 2,12,10,20,17, 3)( 5,15,14,24,22, 8)( 6,16,13,23,21, 7)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1,12,22, 7,18, 3,14,23, 9,20, 5,16)( 2,11,21, 8,17, 4,13,24,10,19, 6,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,18)( 6,17)( 7,20)( 8,19)( 9,22)(10,21)(11,24) (12,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,18, 9)( 2,17,10)( 3,20,12)( 4,19,11)( 5,22,14)( 6,21,13)( 7,23,16) ( 8,24,15)$ |
| $ 6, 6, 6, 6 $ | $1$ | $6$ | $( 1,22,18,14, 9, 5)( 2,21,17,13,10, 6)( 3,23,20,16,12, 7)( 4,24,19,15,11, 8)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 10] |
| Character table: |
2 3 2 2 2 3 2 2 2 3 2 2 2 3 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1a 2a 12a 6a 6b 6c 4a 2b 3a 6d 6e 12b 2c 3b 6f
2P 1a 1a 6b 3b 3a 3a 2c 1a 3b 3b 3a 6f 1a 3a 3b
3P 1a 2a 4a 2b 2c 2a 4a 2b 1a 2a 2b 4a 2c 1a 2c
5P 1a 2a 12b 6e 6f 6d 4a 2b 3b 6c 6a 12a 2c 3a 6b
7P 1a 2a 12a 6a 6b 6c 4a 2b 3a 6d 6e 12b 2c 3b 6f
11P 1a 2a 12b 6e 6f 6d 4a 2b 3b 6c 6a 12a 2c 3a 6b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1
X.4 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.5 1 -1 A -A -/A /A -1 1 -A A -/A /A 1 -/A -A
X.6 1 -1 /A -/A -A A -1 1 -/A /A -A A 1 -A -/A
X.7 1 -1 -/A /A -A A 1 -1 -/A /A A -A 1 -A -/A
X.8 1 -1 -A A -/A /A 1 -1 -A A /A -/A 1 -/A -A
X.9 1 1 A A -/A -/A -1 -1 -A -A /A /A 1 -/A -A
X.10 1 1 /A /A -A -A -1 -1 -/A -/A A A 1 -A -/A
X.11 1 1 -/A -/A -A -A 1 1 -/A -/A -A -A 1 -A -/A
X.12 1 1 -A -A -/A -/A 1 1 -A -A -/A -/A 1 -/A -A
X.13 2 . . . -2 . . . 2 . . . -2 2 -2
X.14 2 . . . B . . . -/B . . . -2 -B /B
X.15 2 . . . /B . . . -B . . . -2 -/B B
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = -2*E(3)
= 1-Sqrt(-3) = 1-i3
|